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Abstract

Here is the outline of the talk I will be giving to the Graduate Student
Seminar (at Yale). The talk will be about the Borsuk Ulam theorem and its
applications to discrete mathematics problems. Most of the proofs written
below will be sketches, and will not go into painful details.

1 The theorem

Theorem 1. For every n ≥ 0, we have for every continuous map f : Sn → Rn, there
exists a point x ∈ Sn with f (x) = f (−x).

2 Direct Applications of Borsuk-Ulam

2.1 The Ham Sandwich Theorem

Intuitively speaking, the HST says that if we make a sandwich with the follow-
ing three ingredients: Cheese, ham and bread, and we stack them however we
want, and we place as many slices as we want, that then there exists a cut such
that it splits the sandwich such that both parts have the same amount of ham,
bread and cheese (all three items are split evenly simultaneously!). Formally
speaking, here is the theorem:

Theorem 2. Let µ1, ..., µd be finite Borel measures on Rd such that every hyperplane
has measure 0 for each of the µi. Then there exists a hyperplane h such that

µi(h+) =
1
2

µi(R
d)

for i = 1, ..., d. Here h+ denotes one of the half spaces defined by h.

Proof. The idea is as follows, for each point in Sd assign a hyper plane in Rd as
follows:

u 7→ h+(u)

(u0, ..., ud) 7→ {(x1, ..., xd) ∈ Rd : u1x1 + ... + udxd ≤ u0}
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before we go on, note that h+(−u) = {(x1, ..., xd) ∈ Rd : −u1x1 − ...− udxd ≤
−u0} = {(x1, ..., xd) ∈ Rd : u1x1 + ... + udxd ≥ u0}, so antipodal points corre-
spond to opposite half spaces. Now define a function from Sd to Rd as follows:

f : u 7→ (µ1(h+(u)), ..., µd(h+(u)))

Note that by Borsuk Ulam, there exists a point u such that f (u) = f (−u), so
indeed we have µi(h+(u)) = µi(h+(−u)) which by previous remarks we have
h+(−u) = Rd\h+(u), and since hyperplanes have measure zero: µi(h+(u)) =
1
2 µi(R

d).

Now we give the discrete version of the HST,

Theorem 3. Let A1, ..., Ad be finite point sets in Rd. Then there exists a hyperplane
h that simultaneously bisects A1, ..., Ad.

Careful, since we don’t know whether the points are in general position or
not, the word bisect means that each of the open half spaces contains at most
| 12 Ai| points of Ai. If however, the points are in general position and the sets
Ai are disjoint, we can say that each of the open half spaces contains half of the
points (with one point in h if |Ai| is odd).

2.2 Multicolored Partitions

Consider the following game: You have n red points in the black board and n
blue points in the board. Can you always pair them up such that the straight
lines joining any two of them are non-intersecting? What about for higher
dimensional cases? The answer is yes in both cases:

Theorem 4. Let A1, ..., Ad be disjoint sets of cardinality n living in Rd (in general
position). Let us think of the sets Ai as having different colors. Then there exists
a partition of the set A1 ∪ ... ∪ Ad into n rainbow d-tuples whose convex hulls are
disjoint.

Proof. If n is odd, by the discrete HST in general position, we have that there
exists a hyperplane that contains exactly one point of each Ai and then we
can apply induction to each half. For the even case, it is the same, but our
hyperplane won’t contain any points. The case for n = 2 is easy: Consider a
matching such that the sum of the lengths of the lines is minimal. If there are
two that intersect, contradict minimality.

2.3 Necklace Theorem

Imagine two thieves that steal a (open) necklace. The necklace contains a bunch
of beautiful stones (diamonds, saphires, etc), and say that there is an even num-
ber of each kind, and a total of d different kinds of stones. Then they want to
split the loot, so they have to make cuts to the necklace, the question is: What
is the minimum number of cuts that are required for them to split the loot?
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Theorem 5. At most d cuts are necessary

Proof. Place the necklace into the moment curve γ(t) = (t, t2, ..., td) (parametric
equation). If the necklace has n stones, we define:

Ai = {γ(k) : the kth stone is of the ith kind k = 1, 2, .., n}

Then apply the HST (discrete), and note that since the points are in a moment
curve, they are already in general position. Thus, there exists a hyperplane
that cuts divides evenly each of the Ai. This hyperplane can only intersect the
moment curve in at most d places (fact about moment curves), so we get the
desired result.

2.4 Chromatic number of the Kneser Graph

Let us define the kneser graph, KGn,k. The set of vertices are the k-subsets of [n]
and they are joined by the following rule: Two vertices are adjacent if and only
if the corresponding sets are disjoint. Note a couple of interesting examples: If
2k > n then we have that any two distinct k-subsets will have to intersect, so
we would have a graph with no edges (boring), so consider cases when 2k ≤ n.
Note that if we have equality, i.e., 2k = n, then we have a matching (since every
set will only be adjacent to its complement), again not very interesting.

Define the chromatic number to be the minimum number of colors required
to color the vertex set of a graph such that adjacent vertices get different colors.

The conjecture made by Kneser in 1955, and proved by Lováz is the follow-
ing:

Theorem 6. χ(KGn,k) = n− 2k + 2 for n ≥ 2k− 1.

Before going into the proof of the theorem, let us define a new term and
make a remark.

Define χ f (G) (the fractional chromatic number of G) to be the infimum of the
set { a

b | the vertex set V(G) can be covered by a independent sets, and each
vertex is covered at least b times}

It is easy to see that χ f (G) ≤ χ(G), but it is not easy to see whether this two
values are going to be close to each other. Kneser graphs provide a family of
examples such that χ f is much smaller than χ (not many examples are known).

Lemma 1. χ f (KGn,k) = n/k for n ≥ 2k.

Proof. The reason why I want to prove this is because it uses one of my fa-
vorites theorems in combinatorics: Erdos-Ko-Rado theorem. It says that if we
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have F ⊂ 2[n] a family of k-sets, with the property that any two sets F, F ∈ F
intersect, then |F | ≤ (n−1

k−1) (in fact this is tight by considering all the k-sets that
contain a fixed element).

First we prove that χ f (KG) ≤ n/k: Consider the sets Ai to be the k-subsets
of [n] that contain i. Then note that Ai is an independent set since any two
members of Ai contain i (and hence not an empty intersection), so there is no
edges in between them. Secondly, then we have A1, ..., An, and note that each
vertex is covered exactly k times (for instance the vertex {1, 2., ..., k} is covered
by A1, ...., Ak). Hence, χ f ≤ n/k.

For the other direction we will need the Erdos-Ko-Rado theorem: Say we can
cover KG by a independent sets A1, .., Aa and each vertex is covered at least b
times. Then look at

⋃
Ai as a multiset. Let us bound above and below | ∪ Ai|.

Since each vertex gets covered at least b times and there are (n
k) vertices we

have that:

b
(

n
k

)
≤ | ∪ Ai|

to bound it above note that each |Ai| is an independent set, so each Ai satisfy
the conditions of the EKR theorem, hence:

| ∪ Ai| ≤ a
(

n− 1
k− 1

)
putting these two together:

n
k
=

(n
k)

(n−1
k−1)

≤ a
b

and hence, χ f (KG) ≥ n/k.

Proof. Theorem 6:In order to do this proof we need a consequence (it is actu-
ally an equivalent statement, but that doesn’t concern us) of the Borsuk Ulam
theorem.

Lemma 2. Lyusternik-Shnirel‘man:For any cover F1, .., Fn+1 of Sn by n + 1 closed
sets, tehre is at least one set containing a pair of antipodal points. The statement also
holds if the sets Fi are all open. The statement also holds if the Fi are either open or
closed.

Proof. Closed case: Define f : Sn → Rn by f (x) = (d(x, F1), ..., d(x, Fn)), then
there exists a point with f (x) = f (−x) = y. If any of the coordinates of y = 0,
then we are done. If all the coordinates are non-zero, then they lie in Fn+1.

Open case: Consider an open cover U1, .., Un+1, then for each Ui there is a
closed Fi ⊂ Ui such that Fi is a closed set and they are a covering of the sphere.
For the mixed case do the same to the open sets of the collection.
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With this in mind we go ahead and prove Kneser’s conjecture: First we
show that it is impossible to color the graph with at most d = n− 2k + 1 colors.
Consider a set X of n points in Sd such that any hyperplane going through the
origin in Rd+1 does not contain more than d points. Then let us think of the
set X as [n]. Assume that there is a proper coloring, so for every k-tuple of X
we assign a color. Construct the sets A1, ..., Ad by the following rule, the point
x ∈ Sd is in Ai if there is a k-tuple of points in X in the open hemisphere, H(x),
that gets assigned the color i. Then A1, ..., Ad are d open sets, and let Ad+1 be
the complement of them (a closed set). Then we have a covering, and by pre-
vious remarks there is an index i such that x,−x ∈ Ai.

If i ≤ d, then it means that there is a k-tuple of color i, and a disjoint k-tuple of
color i as well. This is a contradiction since we have a proper coloring.

If i = d + 1, then we have that H(x) and H(−x) do not contain a k-tuple
(otherwise x and −x would be in some Aj with j < d + 1). Then the set
Sd\(H(x)∪H(−x)) contains at least n− (k− 1)− (k− 1) = n− 2k+ 2 = d+ 1
points, but this contradicts the choice of X since this would imply that there is
a hyperplane through the origin containing more than d points. Hence, we
cannot color KG using at most n− 2k + 1 colors.

Now we have to show that n − 2k + 2 colors suffice: Color the vertices F of
KG by the following rule:

χ(F) = min{min(F), n− 2k + 2}

If two sets F and F′ get the same color, and it is less than n − 2k + 2, then
they intersect, so they are disjoint. If they get the same color and the color is
n − 2k + 2, then both F and F′ are contained in {n − 2k + 2, ..., n} a set with
2k− 1 and so the sets must intersect, hence they are not adjacent.

Now note that if we let n = 3k, by our first part we obtain that χ f (KG) = 3
whereas χ(KG) = k + 2, so as promised we found a family of graphs for
which we can make the gap between fractional chromatic number and chro-
matic number as big as possible.


