NOTES FOR THE ANALYSIS QUAL

DANIEL MONTEALEGRE

Abstract

This are some notes I am typing for the analysis qual. I have received some help from other current graduate students. I will be focusing on professor Margulis old quals since he will be the one giving it out this coming spring.

1. THEOREMS TO KNOW (STATEMENT AND PROOF)

1 Monotone Convergence Theorem
2 Fatou's Lemma
3 Dominated Convergence Theorem
4 Open Mapping Theorem
5 Riemann Mapping Theorem
6 Banach algebra, elements have non-empty spectrum
7 Baire Category Theorem
8 Spectral Theorem for self-adjoint compact operators
9 Holder's inequality
10 Minkowsky inequality
11 Minkowsky inequality for integrals
12 Extreme Points for L^{1} and L^{∞}
$13\|T\|=\left\|T^{*}\right\|$

1.1. Monotone Convergence Theorem.

Theorem 1. Let X be a measurable space. Let $\left\{f_{n}\right\}$ be a monotonic sequence (i.e., $f_{n}(x) \leq$ $f_{n+1}(x)$ for all $\left.x \in X\right)$ of non-negative measurable functions which converge pointwise to a function f. Then we have that f is measurable and moreover that $\lim \int f_{n}=\int f$.

Proof. It is easy to see that f is measurable. To see that the limit commutes with the integral consider the following: As $f_{n} \leq f_{n+1}$ then we have that $f_{n} \leq f$, by taking integrals we get that $\int f_{n}$, since this holds for every n, we have that

$$
\lim \int f_{n} \leq \int f
$$

For the other direction, let α be any positive number strictly less than 1 , and let ϕ be a simple function such that $\phi \leq f$. Then let $E_{n}=\left\{x \mid f_{n}(x) \geq \alpha \phi(x)\right\}$. Since $\left\{f_{n}\right\}$ is a monotonic sequence note that $E_{1} \subset E_{2} \subset E_{3} \ldots$. Also note that since $f_{n} \rightarrow f$ we have that $\cup E_{i}=X$. Hence,

$$
\int f_{n} \geq \int_{E_{n}} f_{n} \geq \int_{E_{n}} \alpha \phi(x)=\alpha \int_{E_{n}} \phi(x)
$$

as $n \rightarrow \infty$ we have

$$
\lim \int f_{n} \geq \alpha \int_{E_{n}} \phi(x)=\alpha \int \phi(x)
$$

Since this holds for every $\alpha<1$, it also holds for $\alpha=1$, and taking supremum over all $\phi(x)$ yields:

$$
\lim \int f_{n} \geq \int f
$$

just as desired.

1.2. Fatou's Lemma.

Theorem 2. Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions, then

$$
\int\left(\liminf f_{n}\right) \leq \liminf \int f_{n}
$$

Proof. The idea is to use the Monotone Convergence theorem. Hence, we have to construct a monotonic sequence of functions. The natural way is to define $g_{k}=\inf _{i \geq k} f_{i}$. This yields $g_{k} \leq g_{k+1}$ and moreover we have that $\lim _{k \rightarrow \infty} g_{k}=\lim \inf f_{n}$. Hence,

$$
\lim \int g_{k}=\int \lim g_{k}=\int \liminf f_{n}
$$

where the first equality above holds by MCT. Also, note that since $g_{k} \leq f_{k}$, so we have that $\int g_{k} \leq \int f_{k}$. Take liminf at both sides to obtain:

$$
\lim \inf \int g_{k} \leq \liminf \int f_{k}
$$

but $\left\{\int g_{k}\right\}$ has a limit, so $\lim \inf$ agrees with lim, and by the line above we get:

$$
\int \lim \inf f_{n} \leq \liminf \int f_{n}
$$

It is important to note that strict inequality can hold. Consider $f_{2 n+1}$ to be:

and $f_{2 n}$ to be

then $\int f_{n}=4$, so $\lim \inf \int f_{n}=4$. Note however that $\lim \inf f_{n}$ is:

and we get that $\int \lim \inf f_{n}=1$. Hence strict inequality hapens.
1.3. Dominated Convergence theorem. Suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions that converge pointwise to f. If there exists a function $g \in L^{1}$ such that

$$
\left|f_{n}(x)\right| \leq g(x) \quad(n=1,2, \ldots ; x \in X)
$$

then $f \in L^{1}$ and

$$
\begin{gathered}
\lim \int\left|f_{n}-f\right|=0 \\
\lim \int f_{n}=\int f
\end{gathered}
$$

Before we begin the proof let me state a couple of things. The convergence of the $f_{n} \rightarrow f$ does not have to be in X. It can happen a.e. and the result will be the same.

Proof. First of all note that since $\left|f_{n}\right| \leq g$, then we have that $|f| \leq g$, so in particular we will have that $f \in L^{1}$. Now note that $\left|f-f_{n}\right| \leq 2 g$, so we have:

$$
2 g=2 g-\liminf \left|f-f_{n}\right|
$$

since $\lim \inf \left|f-f_{n}\right|=0$. Taking integrals at both sides:

$$
\int 2 g=\int\left(2 g-\liminf \left|f-f_{n}\right|\right)=\int \liminf \left(2 g-\left|f-f_{n}\right|\right) \leq \liminf \int 2 g-\left|f-f_{n}\right|
$$

where the above inequality is given by Fatou's. Then,

$$
=\int 2 g+\liminf \left(-\int\left|f-f_{n}\right|\right)=\int 2 g-\lim \sup \int\left|f-f_{n}\right|
$$

Thus,

$$
\lim \sup \int\left|f-f_{n}\right| \leq 0
$$

a sequence of non-negative numbers whose limit supremum is non-positive must converge to 0 . That is, $\lim \int\left|f-f_{n}\right|=0$, just as desired. From here we get that $\left|\int f-f_{n}\right| \leq$ $\int\left|f-f_{n}\right| \rightarrow 0$, so $\int f_{n} \rightarrow \int f$, which is the second conclusion.

1.4. Open Mapping theorem.

Theorem 3. Let $T: X \rightarrow Y$ be a surjective linear map between Banach spaces. Then T is open.
Proof. First of all note that it suffices to show that $T\left(B_{1}\right)$ has an open ball around 0 (why?). Denote by B_{ϵ} the open ball of radius ϵ. Then we have that $\cup_{n=1}^{\infty} T\left(B_{n}\right)=Y$ since T is surjective. By Baire's category theorem, we have that there is an n such that $T\left(B_{n}\right)$ is not nowhere dense. By contraction, we can assume that $T\left(B_{1}\right)$ is not nowhere dense. Hence, there exists an open set W such that $W \subset \overline{T\left(B_{1}\right)}$. Let $y_{0} \in W$ and $r>0$ be such that $B\left(y_{0}, 4 r\right) \subset W$ (ball centered at y_{0} or radius $4 r$). Then let $y_{1}=T(x)$ be such that $\left|y_{1}-y_{0}\right| \leq 2 r$. Then for any $y \in Y$ with $|y|<2 r$ we have:

$$
y=y_{1}+y-y_{1}=T\left(x_{1}\right)+\left(y-y_{1}\right)
$$

note $y-y_{1} \in B\left(y_{1}, 2 r\right)$ since $|y|<2 r$, so we have that

$$
y=T\left(x_{1}\right)+\left(y-y_{1}\right) \subset T\left(B_{1}\right)+B\left(y_{1}, 2 r\right) \subset T\left(B_{1}\right)+B\left(y_{0}, 4 r\right) \subset T\left(B_{1}\right)+\overline{T\left(B_{1}\right)}=\overline{T\left(B_{2}\right)}
$$

dividing by 2 , we obtain that if $|y|<r$ then $y \in \overline{T\left(B_{1}\right)}$. In general, $|y|<r / 2^{n}$ will be in $\bar{T}\left(B_{1 / 2^{n}}\right)$.
Assume that $|y|<r / 2$, then $y \in \overline{T\left(B_{1 / 2}\right)}$, so let $x_{1} \in B_{1 / 2}$ be such that $\left|y-T x_{1}\right|<r / 4$. Then we have that $y-T x_{1} \in \overline{T\left(B_{1 / 4}\right)}$, so let $x_{2} \in B_{1 / 4}$ be such that $\left|\left(y-T x_{1}\right)-T x_{2}\right|<r / 8$. Then we have that $y-T x_{1}-T x_{2} \in \overline{T\left(B_{1 / 8}\right)}$. Recursively, obtain $x_{n} \in B_{1 / 2^{n}}$ to be such that $\left|y-\sum_{i=1}^{n} T\left(x_{i}\right)\right|<r / 2^{n+1}$. Note that since $\left|\sum_{i=1}^{\infty} x_{i}\right| \leq \sum_{i=1}^{\infty}\left|x_{i}\right|<1$, we have that $\sum x_{i}$ converges to a point x (as X is Banach), so in particular we have that $y=T x$, and since $x \in B_{1}$, we obtain that $y \in T\left(B_{1}\right)$. That is, we have shown that $B_{r / 2} \subset T\left(B_{1}\right)$.

1.5. Riemann Mapping Theorem.

Theorem 4. Let Ω be a simply connected domain of \mathbb{C} which is proper. Then there exists a biholomorphic map from Ω to the unit disk.

Proof. We will split the proof into three steps. Some of the steps do not go into horrifying detail since a sketch is what is sufficient and expected.

1 First we will prove that we can map Ω into a subset of the unit disk containing 0 . Hence, for the next two steps we will assume that $\Omega \subset \mathbb{D}$.
2 We will create a family of injective functions from Ω to \mathbb{D} with the condition that $f(0)=0$. We will look at the $\sup \left\{\left|f^{\prime}(0)\right|\right\}$, and we will show that there is a function in our family that attains such a maximum using Montel's theorem.

3 We will show that the function that we obtain in step 2 is actually surjective, and hence the desired map we were looking for. We will do so by supposing that it is not surjective, and then construction a function with a higher derivative at zero, which would contradict the maximality condition that it ought to have.

Step 1: First of all since our Ω is proper, there is a α such that $z-\alpha$ does not vanish in Ω, since it is also simply connected, we have that we can define a branch of the logarithm here:

$$
f(z)=\log (z-\alpha)
$$

by exponentiating both sides we see that f is an injective function. Secondly, pick a point $w \in \Omega$, we claim that there is a circle centered at $f(w)+2 \pi i$ that does not meet $f(\Omega)$. To see this, assume that there is a sequence of points z_{n} such that $f\left(z_{n}\right) \rightarrow f(w)+2 \pi i$. Then we have by taking exp at both sides that $z_{n} \rightarrow w$ so by taking f again we get: $f\left(z_{n}\right) \rightarrow f(w)$, a contradiction. Hence, there is a δ such that $d(f(w)+2 \pi i, f(\Omega))>\delta$. Define:

$$
F(z)=\frac{1}{f(z)-(f(w)+2 \pi i)}
$$

hence, we have that $|F(z)|<\delta^{-1}$, so we have that $F(\Omega)$ is an injective bounded function. By translationg and scaling, we can assume that F maps Ω into \mathbb{D} and $F(0)=0$.

Step 2: Assume that Ω contains 0 and is contained in \mathbb{D} by virtue of the previous step. Define:

$$
\mathcal{F}=\{f: \Omega \rightarrow \mathbb{D} \mid f \text { is holomorphic and injective and } f(0)=0\}
$$

note that \mathcal{F} is not empty since it contains the identity. Now consider $c=\sup \left\{\left|f^{\prime}(0)\right|\right\}$. Let $\left\{f_{n}\right\}$ be a sequence of functions such that $\left|f_{n}^{\prime}(0)\right| \rightarrow c$. Using Cauchy's inequality we get that \mathcal{F} is uniformly bounded, so by Montel's theorem, we get that there is a subsequence of $\left\{f_{n}\right\}$ that converges uniformly on every compact set. By relabeling, assume that $\left\{f_{n}\right\}$ does converge uniformly to the function f. Note that $\left|f^{\prime}(0)^{\prime}\right|=c$, and to see that $f \in \mathcal{F}$ we have to check a couple of things. Since f is the uniform limit of injective functions, we have that f is either constant or injective. It cannot be injective since $c \geq 1$ as the identity in in \mathcal{F}. Thus, f is injective. Also, we have that $|f(z)| \leq 1$, but by maximum modulus, we have that $|f(z)|<1$. The last condition is clear, $f(0)=0$.

Step 3: We claim that the function f from step 2 is surjective. Assume it is not surjective, then there is an $\alpha \in \mathbb{D}$ such that α is not in the image of f. Then let φ_{β} be the FLT that interchanges 0 and β and let g be the square root function (which we can define in a simply connected domain that does not contain 0). Consider the function:

$$
F=\varphi_{g(\alpha)}^{-1} \circ g \circ \varphi_{\alpha} \circ f
$$

It is easy to see that F is injective that that F takes 0 to 0 . Solving for f we get:

$$
f=\Phi \circ F
$$

Note that Φ is not injective, so by Schwarz lemma, we have that $\left|\Phi^{\prime}(0)\right|<1$. Hence, $\left|F^{\prime}(0)\right|>\left|f^{\prime}(0)\right|$, a contradiction with the choice of f. Hence, f is indeed surjective.
1.6. Banach Algebra, elements have a non-empty spectrum. The question usually asks to define a Banach algebra:
Definition 5. We say A is a Banach algebra if it is a Banach space, where we define a multiplication in A that satisfies the following properties:

$$
\begin{gathered}
\|x y\| \leq\|x\|\|y\| \\
x(a+b)=x a+x b \quad(a+b) x=a x+b x \quad x(\alpha y)=\alpha(x y)=(\alpha x) y \quad(x a) b=x(a b)
\end{gathered}
$$

where $x, a, b \in A$ and $\alpha \in \mathbb{F}$.
We usually assume that $\mathbb{F}=\mathbb{C}$ and that A contains a unit element e such that $x e=x=$ $e x$ for all $x \in A$. Define $\sigma(x)=\{\lambda \in \mathbb{C}: x-\lambda e$ is not invertible $\}$

Theorem 6. Let A be a Banach algebra (over the complex numbers) with unit. Then for any $x \in A, \sigma(x)$ is not empty.

Proof. Let $x \in A$, and assume for sake of a contradiction that $\sigma(x)=\emptyset$, then we have that for $\lambda_{0} \in \mathbb{C},\left(x-\lambda_{0} e\right)^{-1} \neq 0$, so define $\phi\left(\left(x-\lambda_{0} e\right)^{-1}\right)=\left\|\left(x-\lambda_{0} e\right)^{-1}\right\|$. Then ϕ extends to a bounded linear functional in all of A by Hanh-Banach. Define F to be the following map:

$$
F(\lambda)=\phi\left((x-\lambda e)^{-1}\right)
$$

where the above map is well defined for all $\lambda \in \mathbb{C}$ since we are assume that $\sigma(x)$ is empty. Now note that

$$
F(\lambda)=\phi\left((x-\lambda e)^{-1}\right)=(1 / \lambda) \phi\left((x / \lambda-e)^{-1}\right)
$$

as $\lambda \rightarrow \infty$, we have that $x / \lambda-e \rightarrow e$, so $\phi\left((x / \lambda-e)^{-1}\right) \rightarrow \phi(-e)$, and we see that $F(\lambda) \rightarrow 0$. If we manage to show that F is holomorphic, then we would have that F is entire and by Liouville's theorem it is constant, but it is constant that tends to 0 , so it is the zero function, but that is a contradiction since ϕ is not the zero functional.
Hence, it remains to prove that F is indeed holomorphic:

$$
\lim _{h \rightarrow 0} \frac{|F(\lambda+h e)-F(\lambda)|}{|h|}
$$

1.7. Baire Category Theorem.

1.8. Spectral Theorem for self-adjoint compact operators.

Theorem 7. Let H be a Hilbert space (non-empty), and say T is a compact self-adjoint linear operator. Then there exists an orthonormal basis consisting of eigenvectors. Moreover, we have that for every $\epsilon>0$, we only have finitely many (counting multiplicity) eigenvalues outside of the ball of radius ϵ

Proof. We first show that H must contain an eigenvector. First of all note that $\langle T x, x\rangle \in \mathbb{R}$ since T is self-adjoint. Then use the result that says that for T self-adjoint we have:

$$
\|T\|=\sup \{|\langle T x, x\rangle|:\|x\| \leq 1\}
$$

Then, let x_{n} be a sequence in B_{1} (open ball of radius 1), such that $\left|\left\langle T x_{n}, x_{n}\right\rangle\right| \rightarrow\|T\|$, and let λ be such that $\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda$, by previous remarks we have that $\lambda \in \mathbb{R}$, and we have that $|\lambda|=\|T\|$. Then we have that $\left\{T x_{n}\right\}$ is a sequence in $T\left(B_{1}\right)$, so by compactness of T,
we have that there exists a subsequence that converges. Up to relabeling, we can assume that $\left\{T x_{n}\right\}$ converges, to say y. Note that

$$
\left\|T x_{n}-\lambda x_{n}\right\|^{2}=\left\langle T x_{n}-\lambda x_{n}, T x_{n}-\lambda x_{n}\right\rangle=\left\|T x_{n}\right\|^{2}+\left\|\lambda T x_{n}\right\|^{2}-2 \lambda\left\langle T x_{n}, x_{n}\right\rangle \leq 2 \lambda^{2}-2 \lambda\left\langle T x_{n}, x_{n}\right\rangle
$$

which tends to 0 . Hence, we have that $T y=\lambda y$ because:

$$
T y=T\left(\lim T x_{n}\right)=T\left(\lim \lambda x_{n}\right)=\lambda \lim T\left(x_{n}\right)=\lambda y
$$

(second equality is due to the previous remark). Hence, we have that y is an eigenvalue.
Using Zorn's lemma, choose a maximal set of orthonormal eigenvectors, call it E. Let W be the closure of the span of E. We claim that W is equal to H. For sake of contradiction that W is properly contained in H. Then W^{\perp} is not empty. It is easy to see that W is T-invariant, which makes $W^{\perp} T$-invariant as well. We can restric T to W^{\perp}, and we still have a compact, self-adjoint operator. Then applying the same argument as above, we have that we can find an eigenvalue. A contradiction with the maximality given by Zorn's. Hence, $W=H$, just as desired.
For the last remark let $\epsilon>0$, and for sake of contradiction say that there are infinitely many eigenvalues with multiplicity outside the ball of radius epsilon. Then for any two eigenvectors $v_{1} \neq v_{2}$ with corresponding eigenvalues λ_{1}, λ_{2} we have that

$$
\left\|T v_{1}-T v_{2}\right\|^{2}=\left\|T v_{1}\right\|^{2}+\left\|T v_{2}\right\|^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}>2 \epsilon^{2}
$$

so since their distance is bounded below an infinite sequence will never have a convergent subsequence, that is a contradiction since T is supposed to be compact.

1.9. Holder's inequality.

Theorem 8. Suppose $1<p<\infty$ and p, q Holder conjugates. If f and g are measurable functions on X, then

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Proof. We will use Young's inequality which states that if $u, v>0$ then we have that $u v \leq u^{p} / p+v^{q} / q$ where p, q are Holder conjugates. Assuming this the rest of the problem is very easy: First of all note that if $\|f\|_{p}=0$ then $f=0$ a.e., and so $f g=0$ a.e, so we have the equality $0=0$, also if $\|f\|_{p}=\infty$ then it holds trivially (this is an abuse of notation, when people write $\|f\|_{p}$ then assume that $f \in L^{p}$ and thus it is a finite quantity). Similarly for g. Then we can define:

$$
u=\frac{|f|}{\|f\|_{p}} \quad v=\frac{|g|}{\|g\|_{q}}
$$

Applying Young's inequality:

$$
\frac{|f g|}{\|f\|_{p}\|g\|_{q}}=u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q}=\frac{|f|^{p}}{p\|f\|_{p}^{p}}+\frac{|g|^{q}}{q\|g\|_{q}^{q}}
$$

integrating both sides we get:

$$
\frac{\int|f g|}{\|f\|_{p}\|g\|_{q}} \leq 1
$$

as the desired result follows.

1.10. Minkowski inequality.

Theorem 9. Let $f, g \in L^{p}$. Then we have that $f+g \in L^{p}$ and moreover,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Proof. First we have to show that $f+g \in L^{p}$. To do so, consider the following:

$$
|f+g|^{p}=|(2 f) / 2+(2 g) / 2|^{p} \leq|2 f|^{p} / 2+|2 g|^{p} / 2
$$

where the inequality comes from the convexity of x^{p}. Thus,

$$
|f+g|^{p} \leq 2^{p-1}\left(|f|^{p}+|g|^{p}\right)
$$

integrating at both sides shows us that $f+g \in L^{p}$. Now,

$$
|f+g|^{p}=|f+g||f+g|^{p-1} \leq(|f|+|g|)|f+g|^{p-1}
$$

integrating both sides:

$$
\begin{gathered}
\|f+g\|_{p}^{p} \leq \int(|f|+|g|)|f+g|^{p-1}=\int|f||f+g|^{p-1}+\int|g||f+g|^{p-1} \\
\leq\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int\left(|f+g|^{p-1}\right)^{q}\right)^{1 / q}=\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int\left(|f+g|^{p}\right)^{(p-1) / p}\right. \\
=\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p-1}
\end{gathered}
$$

and the result follows.
1.11. Minkowsky inequality for integrals. Let $\left(X, \Sigma_{1}, \mu\right)$ and (Y, Σ_{2}, ν) be σ-finite measure spaces. Let $f: X \times Y \rightarrow[0, \infty]$ be a measurable function, and let $1 \leq p<\infty$. Then:

$$
\left\{\int_{X}\left(\int_{Y} f(x, y) d \nu(y)\right)^{p} d \mu(x)\right\}^{1 / p} \leq \int_{Y}\left(\int_{X} f(x, y)^{p} d \mu(x)\right)^{1 / p} d \nu(y)
$$

Proof. Note that if $p=1$, then the theorem is just Tonelli's, so assume $p>1$. First of all we will consider the case when the function defined by $F(x)=\int_{Y} f(x, y) d \nu(y)$ is in L^{p}. Using this result, we can always break the general case into this one.

Let $g \in L^{q}$ be any function with $\|g\|_{q} \leq 1$. Then,

$$
\begin{gathered}
\int_{X} F(x)|g(x)| d \mu(x)=\int_{X} \int_{Y} f(x, y) d \nu(y)|g(x)| d \mu(x)=\int_{Y} \int_{X} f(x, y)|g(x)| d \mu(x) d \nu(y) \\
\leq \int_{Y}\left(\int_{X} f(x, y)^{p} d \mu(x)\right)^{1 / p}\left(\int_{X}|g(x)|^{q} d \mu(x)\right)^{1 / q} d \nu(y)=\|g\|_{q} \int_{Y}\left(\int_{X} f(x, y)^{p} d \mu(x)\right)^{1 / p} d \nu(y) \\
\leq\left(\int_{X} f(x, y)^{p} d \mu(x)\right)^{1 / p} d \nu(y)
\end{gathered}
$$

where on the second equality we used Tonelli's and the inequality comes from Holder's. Taking supremum over $g \in L^{q}$ with norm bounded by one we get:

$$
\|F(x)\|_{p} \leq\left(\int_{X} f(x, y)^{p} d \mu(x)\right)^{1 / p} d \nu(y)
$$

which is what we wanted to prove.
To prove it for the general case.Consider $X_{1} \subset X_{2} \subset X_{3} \subset \ldots$ and $Y_{1} \subset Y_{2} \subset Y_{3} \subset \ldots$ such that $\cup X_{i}=X, \cup Y_{i}=Y$ and X_{n} and Y_{n} of finite measure. Then define $f_{n}(x, y)=$ $\min \{n, f(x, y)\}$ in the space $X_{n} \times Y_{n}$. Hence, we have that $f_{n} \rightarrow f$ pointwise and monotonic. Apply above to each f_{n} and the result follows.
1.12. Extreme points of $L^{1}[0,1]$ and $L^{\infty}[0,1]$. Below denote by B_{1} the closed unit ball. Denote $\operatorname{Ext}(C)$ the set of extreme points of the set C.

Theorem 10. In L^{∞} we have that $\operatorname{Ext}\left(B_{1}\right)=\{f:|f|=1$ a.e. $\}$
Proof. Assume that f is in B_{1} and that $|f| \neq 1$ a.e., then there must exist a set with positive measure such that $|f|<1$. That is, $E=\{x:|f(x)|<1\}$ has positive measure. Define $E_{n}=\{x:|f(x)| \leq 1-1 / n\}$, then we have $E=\cup E_{n}$, and since E has positive measure, there exists a set E_{n} with positive measure. Then define:

$$
h(x)=\left\{\begin{array}{lll}
f(x)+\frac{1}{n}, & E_{n} \\
f(x), & E_{n}^{c}
\end{array} \quad g(x)= \begin{cases}f(x)-\frac{1}{n}, & E_{n} \\
f(x), & E_{n}^{c}\end{cases}\right.
$$

note that h, g are both in B_{1} and moreover $f=\frac{1}{2} h+\frac{1}{2} g$, and $h \neq f$ since they differ on a set with positive measure. Hence, f is not an extreme point. Ergo, we have shown $\operatorname{Ext}\left(B_{1}\right) \subset\{f:|f|=1$ a.e. $\}$.

For the other inclusion, assume that f is such that $|f|=1$ a.e., and write f as a convex combination of two function in B_{1} :

$$
f(x)=\lambda h(x)+(1-\lambda) g(x)
$$

taking norms at both sides:

$$
|f(x)|=1=|\lambda h(x)+(1-\lambda) g(x)| \leq \lambda|h(x)|+(1-\lambda)|g(x)| \leq 1
$$

hence, the inequalities above are actually equalities. For that to hold we must have that $|h|=1=|g|$ a.e., so we see that h and g take values on the unit circle in \mathbb{C}, this is a stricly convex space, so if there is a set with positive measure, E, such that $h \neq g$ for $x \in E$, then $\lambda h(x)+(1-\lambda) g(x)$ would be a point in the chord matching two distinct points in S_{1}, so it would have norm strictly less than 1 , a contradiction because $|f|$ cannot be less than 1 in a set of positive measure. Hence, $g=h$ a.e., and it follows that $f=g=h$ a.e., and we conclude that f is an extreme point. The desired result has been proven.
Theorem 11. B_{1} has no extreme points in $L^{1}[0,1]$.
Proof. We first show that if B_{1} does have extreme points, then they ought to be of norm 1: Let $f \in B_{1}(0 \neq f)$ and say that $\|f\|<1$ (I am using $\|$.$\| instead of \|\cdot\|_{1}$ because this part of the proof does not require the fact that we are in L^{1}), then let $\epsilon>0$ be such that $\|f\|+\epsilon \leq 1$ and $\|f\|>\epsilon$. Then we have:

$$
f=\frac{1}{2}\left(\frac{\|f\|+\epsilon}{\|f\|} \cdot f\right)+\frac{1}{2}\left(\frac{\|f\|-\epsilon}{\|f\|} \cdot f\right)
$$

the conditions on ϵ guarantee that $\frac{\|f\|+\epsilon}{\|f\|} \cdot f$ and $\frac{\|f\|-\epsilon}{\|f\|} \cdot f$ will be in B_{1}. Hence, f is not an extreme point.

Now we will need the fact that we are in L^{1}. Assume that f is in B_{1} and for sake of contradiction that it is an extreme point. Then by the above argument, we have that $\|f\|_{1}=1$, that is:

$$
1=\int_{0}^{1}|f|
$$

Define

$$
F(t)=\int_{0}^{t}|f|
$$

then we have that F is a continous function, so we have that there exists a $t \in(0,1)$ such $F(t)=1 / 2$. Then,

$$
h(x)=\left\{\begin{array}{ll}
2 f(x), & {[0, t]} \\
0 & (t, 1]
\end{array} \quad g(x)= \begin{cases}0, & {[0, t]} \\
2 f(x), & (t, 1]\end{cases}\right.
$$

we have that $\|h\|_{1}=\|g\|_{1}=1, f \neq h$ and $f=(1 / 2) h+(1 / 2) g$, a contradiction. Hence, B_{1} has no extreme points.
1.13. $\|T\|=\left\|T^{*}\right\|$.

Theorem 12. Let X be a Banach space, and let T be a bounded linear operator, then $\|T\|=\left\|T^{*}\right\|$
Proof. The result is really easy if we assume that for an element x we have:

$$
\|x\|=\sup \left\{|f(x)|: f \in B_{1}^{*}\right\}
$$

where B_{1} is the closed unit ball in X and B_{1}^{*} is the closed unit ball in X^{*}. Assuming this we have:

$$
\begin{aligned}
\|T\| & =\sup \left\{\|T(x)\|: x \in B_{1}\right\} \\
& =\sup \left\{|f(T(x))|: x \in B_{1}, f \in B_{1}^{*}\right\} \\
& =\sup \left\{\left|T^{*}(f)(x)\right|: x \in B_{1}, f \in B_{1}^{*}\right\} \\
& =\sup \left\{\left\|T^{*}(f)\right\|: f \in B_{1}^{*}\right\} \\
& =\left\|T^{*}\right\|
\end{aligned}
$$

for sake of completeness we will include a proof of the fact we just used:

$$
\|x\|=\sup \left\{|f(x)|: f \in B_{1}^{*}\right\}
$$

note that for any $f \in B_{1}^{*}$ we have that

$$
|f(x)| \leq\|f\|\|x\| \leq\|x\|
$$

so we trivially have

$$
\|x\| \geq \sup \left\{|f(x)|: f \in B_{1}^{*}\right\}
$$

for the other inclusion. Let x be given. Define $f(x)=\|x\|$, and extend it to a linear functional using Hanh Banach, to a function such that $|f(y)| \leq\|y\|$, (meaning $f \in B_{1}^{*}$), so we have that there is a function such that $|f(x)|=\|x\|$, proving the other direction of the inequality and the result follows.

2. Theorems to know how to use

Theorem 13. Rouche's theorem: If the complex-valued functions f and g are holomorphic inside and on some closed contour K, with $|g(z)|<|f(z)|$ on K, then f and $f+g$ have the same number of zeros inside K, where each zero is counted as many times as its multiplicity

Theorem 14. Krein-Milman theorem: Let K be a nonempty set, compact, convex, of a locally convex topological vector space X. Then K is the closed convex hull of its extreme points.

Theorem 15. Krein-Milman: Let K be a nonempty compact, convex subset of a locally convex topological vector space X. Then K has an extreme point.
Theorem 16. Alaoglu's theorem: X be a normed linear space. Then B^{*} (closed unit ball in X^{*}) is compact with respect to the weak-* topology

Theorem 17. Stone-Weirstrass: X locally compact Hausdorff space and A is a subalgebra of $C_{0}(X, \mathbb{R}) . A$ is dense if and only if it separates points.
Theorem 18. Montel's theorem: $\mathcal{F}=\left\{f_{n}\right\}$ be a family of holomorphic functions on Ω s.t. is uniformly bounded on compact subsets of Ω. Then, \mathcal{F} is a normal family (i.e., there exists a subsequence in $\left\{f_{n}\right\}$ that converges uniformly on every compact set of Ω).
Theorem 19. Duality of L^{p} : Let $1<p<\infty$ and let q be its Holder conjugate. Let (X, Ω, μ) be a measure space. For $g \in L^{q}$, define $F_{g}: L^{p} \rightarrow \mathbb{F}$ as follows:

$$
F_{g}(f)=\int f g d \mu
$$

Then $F_{g} \in\left(L^{p}\right)^{*}$ and the map $g \mapsto F_{g}$ defines an isometric isomorphism of L^{q} onto L^{p}
If X is σ-finite and $g \in L^{\infty}$ and we define $F_{g}: L^{1} \rightarrow \mathbb{F}$ by:

$$
F_{g}(f)=\int f g d \mu
$$

then $F_{g} \in\left(L^{1}\right)^{*}$ and the map $g \mapsto F_{g}$ defines an isometric isomorphism of L^{∞} onto L^{1}.
Theorem 20. Riesz Representation Theorem: If X is a locally compact space and $\mu \in M(X)$, define $F_{\mu}: C_{0}(X) \rightarrow \mathbb{F}$ by

$$
F_{\mu}(f)=\int f d \mu
$$

Then $F_{\mu} \in C_{0}(X)^{*}$ and the map $\mu \rightarrow F_{\mu}$ is an isomorphism of $M(X)$ onto $C_{0}(X)^{*}$.
Theorem 21. Hanh-Banach Theorem: Let X be a vector space over \mathbb{R} and let q be a sublinear fucntional on X. If M is a linear manifold in X and $f: M \rightarrow \mathbb{R}$ is a linear functional such that $f(x) \leq q(x)$ for all $x \in M$, then there is a linear fnctional $F: X \rightarrow \mathbb{R}$ such that $F \mid M=f$ and $F(x) \leq q(x)$ for all $x \in X$.

Theorem 22. Inverse Mapping Theorem: If X and Y are Banach spaces and $A: X \rightarrow Y$ is a bounded linear transformation that is bijective, then A^{-1} is bounded.

Remark 23. This follows trivially from the Open Mapping theorem since if the function is bijective then we can define A^{-1} and to see that it is bounded, we just note that it is continuous since $A(U)$ is open if and only if U is open.

Theorem 24. The Clsoed Graph Theorem: If X and Y are Banach spaces and $A: X \rightarrow Y$ is a linear transformation such that the graph of A,

$$
\operatorname{gra} A \cong\left\{x \oplus A x \in X \oplus_{1} Y: x \in X\right\}
$$

is closed, then A is continuous.

3. Problems he has asked before

1 Using calculus of residues, prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

Hint: The laurent series for $\cot z=\frac{1}{z}-\frac{1}{3} z-\frac{1}{45} z^{3} \ldots$..
Proof. Let S_{N} be the square with vertices at $(\pm(N+1 / 2), \pm(N+1 / 2)$) (with N a positive integer). Consider the function $f(z)=\frac{\cot \pi z}{z^{4}}$. It is clear that we have simple poles at the non-zero integers and that at 0 we have a pole of order 5. Applying the residue theorem we obtain:

$$
\int_{S_{N}} f(z) d z=2 \pi i\left(\sum_{i=1}^{N} \operatorname{res}(f, i)+\operatorname{res}(f,-i)\right)+2 \pi i \cdot \operatorname{res}(f, 0)
$$

Now we compute the residues. $\operatorname{res}(f, 0)=-\frac{\pi^{3}}{45}$ we can read from the Laurent expansion. To find the simple poles, let $k \neq 0$ be an integer:

$$
\begin{gathered}
\lim _{z \rightarrow k}(z-k) \cdot \frac{\cot \pi z}{z^{4}}=\frac{1}{k^{4}} \cdot \lim _{z \rightarrow k} \cot \pi z(z-k) \\
=\frac{1}{k^{4}} \lim _{z \rightarrow k} \frac{1}{\pi \sec ^{2}(\pi z)}=\frac{1}{\pi k^{4}}
\end{gathered}
$$

If we manage to show that the integral on the left hand side goes to 0 , then we would have:

$$
0=2 \pi i\left(\sum_{i=1}^{\infty} \frac{2}{\pi k^{4}}\right)+2 \pi i\left(-\frac{\pi^{3}}{45}\right)
$$

which clearly gives the desired result. Hence, all we have to do is show:

$$
\int_{S_{N}} f(z) d z \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

First we are going to show that in our contour S_{N} we have that

$$
|\cot (\pi z)| \leq 2
$$

for the vertical line on the right side we have that $z=(N+1 / 2)+i y$:

$$
|\cos (\pi z)|=\frac{|\exp (i \pi((N+1 / 2)+i y))-\exp (-i \pi((N+1 / 2)+i y))|}{2}
$$

2 Let $A_{r_{1}, r_{2}}=\left\{z \in \mathbb{C}: r_{1}<|z|<r_{2}\right\}$. Show that there is a biholomorphic mapping $\varphi: A_{r_{1}, R_{1}} \rightarrow A_{r_{2}, R_{2}}$ if and only if $R_{1} / r_{1}=R_{2} / r_{2}$. You may assume that φ extends to a homeomorphism of the closed annulus and that $\log |\varphi(z)|$ is harmonic.

Proof. One direction is completely trivial. For the other direction we will assume that $r_{1}=r_{2}=1$ (by scaling), so say there is a biholomorphic map from A_{1} to A_{2}. We will show that $R_{1}=R_{2}$.

We first prove the following lemma. With the conditions above we have:
1 If $\lim _{|z| \rightarrow 1}|\varphi(z)|=1$, then $\lim _{|z| \rightarrow R_{1}}|\varphi(z)|=R_{2}$
2 If $\lim _{|z| \rightarrow 1}|\varphi(z)|=R_{2}$, then $\lim _{|z| \rightarrow R_{1}}|\varphi(z)|=1$
We shall prove this fact later. Assuming this, we can always assume that (1) happens because if (2) holds we can substitute φ for R_{2} / φ, and this is still a biholomorphic map from A_{1} to A_{2} such that the first condition is the one that holds.

Define a function $h(z)=\log |z|-\frac{\log R_{1}}{\log R_{2}} \log |\varphi(z)|$. Extend h to the closure of A_{1}. Since (1) is the condition that holds we have that $h(z) \rightarrow 0$ as $|z| \rightarrow 0$ and $|z| \rightarrow R_{1}$. Then, since we can assume that this function is harmonic, by Maximum modulus principle we have that h must be the zero function. It follows that:

$$
\log |z|=\frac{\log R_{1}}{\log R_{2}} \log |\varphi(z)|
$$

Hence,

$$
|z|^{\beta}=|\varphi(z)|
$$

where $\beta=\log R_{2} / \log R_{1}$. Let $P \in A_{1}$, and let $D_{r}(P)$ be a disk centered at P and with r such that $D_{r}(P)$ is contained in A_{1}. Then since we have a function that does not vanish and since the disk is simply connected we can define z^{β} by $e^{\log (z) \beta}$ by picking a branch of the logarithm. Hence, we have that $g(z)=\varphi(z) / z^{\beta}$ is a holomorphic function on the open disk $D_{r}(P)$, but note that $|g(z)|=1$, so in particular the image of g is not open. By open mapping theorem, we must have that g is a constant map. That is, $\varphi(z)=e^{i \theta} z^{\beta}$. We can do this for each point of A_{1}, and since the function is continuous we have that $\varphi(z)=e^{i \theta} z^{\beta}$ in the entire anuli A_{1}. This however is only possible when β is an integer, and since φ is injective, we have that $\beta=1$. Hence, $R_{1}=R_{2}$.

3 Let T be the Fourier transform on $\left.L^{(} \mathbb{R}\right)$ given by

$$
T f(\zeta)=\int e^{-2 \pi i x \zeta} f(x) d x \quad \forall f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})
$$

What is the spectrum of T ? Justify your answer.
Proof. First of all note that since $T(T(f))=f(-x)$, we have that $T^{4}=I$. Then using the identity:

$$
\sigma(p(T))=p(\sigma(T))
$$

for $p(x)=x^{4}$, we have that $1=(\sigma(T))^{4}$, so every element of $\sigma(T)$ is a fourth root of unity. To show that this are actually all the points in the spectrum, we will show that they are eigenvalues. $\{ \pm 1, \pm i\}$:
4 Let μ be a finite, complex Borel measure on the real line, and suppose that for all t real,

$$
\int_{-\infty}^{\infty} e^{i t x} d \mu(x)=0
$$

Prove that μ is the zero measure.
Proof.
5 Let $1<p<\infty$, and let X be a closed convex subset of $L^{p}([0,1], d x)$. Show that there is a point in X which is at the smallest distance from the origin.

Proof. First we will use the fact that L^{p} is uniformly convex: If for every $\epsilon>0$ there exists a $\delta>0$ such that for any two vectors x, y with $\|x\|=\|y\|=1$ the condition $\|x-y\| \geq \epsilon$ implies that $\left\|\frac{x+y}{2}\right\| \leq 1-\delta$.

Let $c=\inf \{\|x\|: x \in X\}$. If $c=0$, then we are done, since it would imply that $0 \in X$ as X is closed. Hence, say $c>0$, and by scaling we can assume that $c=1$.

Let $\left\{x_{n}\right\}$ be a sequence such that $\left\{\frac{x_{n}}{\left\|x_{n}\right\|}\right\}$ goes to 1 . We will show that this latter sequence is Cauchy. We have:

$$
\frac{1}{2}\left\|\frac{x_{n}}{\left\|x_{n}\right\|}+\frac{x_{m}}{\left\|x_{m}\right\|}\right\| \geq \frac{1}{2}\left\|x_{n}+x_{m}\right\|-\frac{1}{2}\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-x_{n}\right\|-\frac{1}{2}\left\|\frac{x_{m}}{\left\|x_{m}\right\|}-x_{m}\right\|
$$

Note that since $\left\{\left\|x_{n}\right\|\right\} \rightarrow 1$ from above, we have that $\left\{\frac{x_{n}}{\left\|x_{n}\right\|}\right\} \rightarrow x_{n}$, so we can choose N large enough so that $n \geq N$ implies

$$
\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-x_{n}\right\|<\delta
$$

also note that since X is a convex set we have that $\frac{1}{2}\left(x_{n}+x_{m}\right) \in X$, so we have $\frac{1}{2}\left\|x_{n}+x_{m}\right\| \geq 1$, thus:

$$
\frac{1}{2}\left\|\frac{x_{n}}{\left\|x_{n}\right\|}+\frac{x_{m}}{\left\|x_{m}\right\|}\right\| \geq 1-\delta
$$

since we are in a uniformly convex space, we must have that

$$
\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-\frac{x_{m}}{\left\|x_{m}\right\|}\right\|<\epsilon
$$

for $n, m \geq N$. Thus, the sequence is Cauchy. This implies that $\left\{x_{n}\right\}$ is Cauchy because:

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-\frac{x_{n}}{\left\|x_{n}\right\|}\right\|+\left\|x_{m}-\frac{x_{m}}{\left\|x_{m}\right\|}\right\|
$$

and we can make the terms on the right arbitrary small. Thus, we have that $\left\{x_{n}\right\}$ converges to a point x, and since X is closed we have that $x \in X$. More over note that since norm is a continous function, we have that $1=\lim \left\|x_{n}\right\|=\left\|\lim x_{n}\right\|=$ $\|x\|$, so we have a point that achieves the minimum distance to the origin.

To show uniqueness of the point we will use the uniform convexity again. Say that there are two points x and x^{\prime} in our set X such that they are of norm 1 . Then we can find an $\epsilon>0$ such that $\left\|x-x^{\prime}\right\|>\epsilon$, but by above, we have that there exists a $\delta>0$ such that $\left\|\frac{x+x^{\prime}}{2}\right\| \leq 1-\delta$, so in particular we have that $x+x^{\prime}$ is in X, so
we found a point on our set with norm less than 1, contradicting the fact that the infimum norm was 1.

6 Prove or disprove the following statement: If $\left\{f_{n}\right\}$ is a sequence of continous functions on $[0,1]$ which converges pointwise to a function f, then there exists a point $x_{0} \in[0,1]$ such that f is continous at x_{0}.

Proof. For a given integer N and $\epsilon>0$ we define the set:

$$
A_{N}(\epsilon)=\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon \quad \forall n, m \geq N\right\}
$$

Note that $A_{N}(\epsilon)$ is a closed set. For any fixed ϵ, we have the inclusions $A_{1}(\epsilon) \subset$ $A_{2}(\epsilon) \subset \ldots$. The union of this sets is all of X since we have that $f_{n}(x)$ converges for any fixed x, so the sequence $\left\{f_{n}(x)\right\}$ is Cauchy and \mathbb{R} is complete. Now define:

$$
U(\epsilon)=\bigcup_{N \in \mathbb{Z}_{+}} \operatorname{int}\left(A_{N}(\epsilon)\right)
$$

We will first prove that $U(\epsilon)$ is open and dense in X and using the Baire category theorem we would have that the set $C=\bigcap_{n \in \mathbb{Z}_{+}} U(1 / n)$ is dense and then we shall prove that f is continous in C.
$U(\epsilon)$ is open and dense: Let V be an arbitrary open set and we want to show that there is an N so that $V \cap \operatorname{int}\left(A_{N}(\epsilon)\right)$ is not empty. First of all note that the set $V \cap \operatorname{int}\left(A_{N}(\epsilon)\right)$ is closed in V, and since $V \subset X$, we have that V is also a Baire space, meaning that there is an m so that $V \cap \operatorname{int}\left(A_{m}(\epsilon)\right)$ not nowhere dense, i.e., it must contain a nonempty set W of V. Because V is open in X, the set W is open in X; therefore, it is contained in $\operatorname{int} A_{m}(\epsilon)$.
f is continuous at C : Given $\epsilon>0$, we shall find a neighborhood W of x_{0} such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ for all $x \in W$. First choose k so that $1 / k<\frac{\epsilon}{3}$. Since $x_{0} \in C$, we have that $x \in U(1 / k)$ for a big enough k; therefore there is an N such that $x_{0} \in \operatorname{int}\left(A_{N}(1 / k)\right)$. Finally, continuity of the function f_{N} enables us to choose a neighborhood W of x_{0}, contained in $A_{N}(1 / k)$, such that

$$
\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\epsilon / 3 \quad x \in W
$$

The fact that $W \subset A_{N}(1 / k)$ implies that

$$
\left|f_{n}(x)-f_{N}(x)\right| \leq 1 / k \quad n \geq N, x \in W
$$

letting $n \rightarrow \infty$ we get:

$$
\left|f(x)-f_{N}(x)\right| \leq 1 / k \quad x \in W
$$

as $x_{0} \in W$ we trivially have

$$
\left|f\left(x_{0}\right)-f_{N}\left(x_{0}\right)\right|<1 / k
$$

thus we have,

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \quad x \in W
$$

just as desired.

7 a Suppose $\left\{F_{n}\right\}$ is a sequence of functions on $L^{\infty}([0,1], d x)$ with norm bounded by $1,\|F\|_{\infty} \leq 1$. Prove or disprove the following statement:

There is a subsequence $\left\{F_{n_{k}}\right\}$ such that for all $G \in L^{1}([0,1], d x)$,

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} F_{n_{k}}(x) G(x) d x
$$

exists.
b Suppose $\left\{F_{n}\right\}$ is a sequence of functions on $L^{1}([0,1], d x)$ with norm bounded by $1,\|F\|_{1} \leq 1$. Prove or disprove the following statement:

There is a subsequence $\left\{F_{n_{k}}\right\}$ such that for all $G \in L^{\infty}([0,1], d x)$,

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} F_{n_{k}}(x) G(x) d x
$$

exists.
Proof. a For this part we are going to use the fact that $L^{\infty} \cong\left(L^{1}\right)^{*}$. For each $F_{n} \in L^{\infty}$ there corresponds a linear functional in L^{1}, call it φ_{n} and moreover the functional is given by the following:

$$
\varphi_{n}(G)=\int F_{n} G
$$

for all $G \in L^{1}$. Then, by Alaoglu's theorem, we have that the closed ball of radius 1 is closed in $\left(L^{1}\right)^{*}$ is compact with respect to the weak-* topology, in particular, since $\left\|\varphi_{n}\right\|=\left\|F_{n}\right\| \leq 1$, we have that $\left\{\varphi_{n}\right\}$ is in such ball, so there exists a convergent subsequence. $\left\{\varphi_{n_{k}}\right\}$, but by definition of the weak-* topology, convergence of $\varphi_{n_{k}}$ means convergence with respect to evaluation. That is, for all $G \in L^{1}, \lim _{k \rightarrow \infty} \varphi_{n_{k}}(G)$ converges, which is precisely what we wanted to prove.
b For a counterexample do the following construction:

8 Let $C \subset[0,1 / 2]$ be a closed subset of Lebesgue measure zero. Suppose that $f(z)$ is a bounded holomorphic function on $D \backslash C$ where $D=\{z \in \mathbb{C}:|z|<1\}$. Prove that f can be extended to a holomorphic function on D
Proof. Define $g(z)$ as follows:

$$
g(w)=\frac{1}{2 \pi i} \int_{\gamma_{r}} \frac{f(z)}{z-w} d z
$$

where γ_{r} is the circle of radius r and $|w|<r$ (with $1 / 2<r<1$). First of all note that $g(w)$ is well defined, that is if $r<r^{\prime}$, then the definition of $g(w)$ is unambiguous as $\frac{f(z)}{z-w}$ is holomorphic in the anulus $\left\{z: r<|z|<r^{\prime}\right\}$, so we can homotope γ_{r} to $\gamma_{r^{\prime}}$ without changing the value of the integral. Hence, for any $w \in D$ we can define $g(w)$. We want to show two things: That g agrees with f in $D \backslash C$ and secondly that g is holomorphic.

For the first part: Let $w \in D \backslash C$. Then since C is closed there exists an open ball B with $w \in B$ and $B \subset D \backslash C$.

9 Find with proof the number of zeros of the function $9 z^{6}+e^{2 z}$ on the closed unit disc in the complex plane.

Proof. Let $f=9 z^{6}$ and let $g=e^{2 z}$, then for $|z|=1$, we have that $|f(z)|=9$ and $|g(z)|=\left|e^{2 z}\right|=\left|e^{2 \operatorname{Re}(z)}\right| \leq e^{2}<9$, then we have that f (which clearly has 6 zeroes, has the same number of zeroes as $9 z^{6}+e^{2 z}$ by Rouche's theorem.

10 Let X be a Banach space, and let A and B be closed linear subspaces.
a Assume that

$$
\inf \{\|x-y\|: x \in A, y \in B,\|x\|=\|y\|=1\}=\delta>0
$$

Show that $A+B$ is closed in V.
b Assume that $A+B=V$ and $A \cap B=\{0\}$. Show that the condition in part a must be true.

Proof. The idea of the proof will be the bound

$$
c(\|a\|+\|b\|) \leq\|a+b\|
$$

because if we do so, then we would have the following: Let $\left\{c_{n}\right\}$ be Cauchy in $C=A+B$, so rewrite it as $\left\{c_{n}\right\}=\left\{a_{n}+b_{n}\right\}$ with $a_{n} \in A$ and $b_{n} \in B$. Then we would have that for large n, m :

$$
\begin{gathered}
\epsilon>\left\|a_{n}+b_{n}-\left(a_{m}+b_{m}\right)\right\| \\
=\left\|a_{n}-a_{m}+b_{n}-b_{m}\right\| \geq c_{1}\left(\left\|a_{n}-a_{m}\right\|+\left\|b_{n}-b_{m}\right\|\right) \geq c_{1}\left\|a_{n}-a_{m}\right\|
\end{gathered}
$$

hence $\left\{a_{n}\right\}$ is Cauchy and so is $\left\{b_{n}\right\}$. As A and B are closed, we have that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ with $a \in A$ and $b \in B$, so we have that $a_{n}+b_{n} \rightarrow a+b \in A+B$. That is, $A+B$ is closed.

To show that $c(\|a\|+\|b\|) \leq\|a+b\|$ we will proceed as follows: First we assume that $\|a\|+\|b\|=1$ and we show that:

$$
\begin{equation*}
\inf \{\|a+b\|:\|a\|+\|b\|=1\} \geq c:=\frac{\min \{\delta, 1\}}{4} \tag{1}
\end{equation*}
$$

First of all note that if $\mid\|a\|-\|b\| \| \geq c$, then we have that $\|a+b\| \geq\|a\|-\|b\|$ and $\|a+b\| \geq\|b\|-\|a\|$, so we have that $\|a+b\| \geq \mid\|a\|-\|b\| \| \geq c$. Thus, assume that $|\|a\|-\|b\||<c$. Note that this implies that $a \neq 0$ because otherwise we would have that $0+\|b\|=\|a\|+\|b\|=1$ and $\|b\|<c$ so we would have $1<c$ a contradiction with the definition of c (this is why in the definition of c we use the $\min \{1, \delta\}$, that
way we ensure that both a and b are non-zero. Hence,

$$
\begin{aligned}
\|a+b\| & =\left\|a-\frac{a}{2\|a\|}+\frac{a}{2\|a\|}+b-\frac{b}{2\|b\|}+\frac{b}{2\|b\|}\right\| \\
& \geq\left\|a-\frac{a}{2\|a\|}\right\|+\left\|\frac{a}{2\|a\|}-\frac{b}{2\|b\|}\right\|+\left\|b-\frac{b}{2\|b\|}\right\| \\
& =-\left|\|a\|-\frac{1}{2}\right|+\left\|\frac{a}{2\|a\|}-\frac{b}{2\|b\|}\right\|-\left\lvert\,\|b\|-\frac{1}{2}\right. \| \\
& \geq \frac{\delta}{2}-\left|\|a\|-\frac{1}{2}\right|-\left\lvert\,\|b\|-\frac{1}{2}\right. \| \\
& =\frac{\delta}{2}-|\|a\|-\|b\||>\frac{\delta}{2}-c>\frac{\delta}{2}-\frac{\delta}{4}=\frac{\delta}{4}>c
\end{aligned}
$$

so we see that (1) is proven. To see how this implies that $c(\|a\|+\|b\|) \leq\|a+b\|$ for general a and b, just note:

$$
\left\|\frac{a}{\|a\|+\|b\|}+\frac{b}{\|a\|+\|b\|}\right\| \geq c
$$

multiplying both sides by $(\|a\|+\|b\|)$ gives the desired result.
For the second part first let Q be the quotient map by A. That is $Q: X \rightarrow X / A$. Then since A is closed we have that X / A is a Banach space, and moreover, we have that the restriction of Q to B, call it T will be surjective (as $A+B=X$) and injective (as $A \cap B=\{0\}$). Then by the Banach open theorem, we have that T is an open map. This is equivalent of saying that T^{-1} is continuous. Now assume for sake of contradiction that

$$
\inf \{\|a-b\|: a \in A, b \in B,\|x\|=\|y\|=1\}=0
$$

then we can find a sequence $\left\{a_{n}-b_{n}\right\}$ such that $\left\|a_{n}\right\|=1=\left\|b_{n}\right\|$ with $a_{n} \in A$ and $b_{n} \in B$ and $a_{n}-b_{n} \rightarrow 0$. Then note the following: $a_{n}-b_{n} \rightarrow 0$ implies that $Q\left(a_{n}-b_{n}\right) \rightarrow 0$. Hence, $\overline{a_{n}-b_{n}} \rightarrow \overline{0}$. Thus we have:
$0=T^{-1}(\overline{0})=T^{-1}\left(\lim \overline{a_{n}-b_{n}}\right)=\lim \left(T^{-1}\left(\overline{a_{n}-b_{n}}\right)\right)=\lim \left(T^{-1}\left(\overline{b_{n}}\right)\right)=\lim \left(b_{n}\right)$
a contradiction since $\left\|b_{n}\right\|=1$, so their limit cannot be 0 .
11 Let ℓ^{2} be the Hilbert space of sequences $\alpha=\left\{a_{n}\right\}, n \leq 1$, such that $\sum\left|a_{n}\right|^{2}$ converges, with the hermitian product

$$
\langle\alpha, \beta\rangle=\sum a_{n} \overline{b_{n}}
$$

Let T be the shift operator, that is

$$
T(\alpha)=\left(0, a_{1}, a_{2}, . .\right)
$$

Compute the spectrum of T.
12 For functions $\phi \in C_{0}^{\infty}(\mathbb{R})$ define the principal value integral against $1 / x$ by

$$
\lim _{\epsilon \rightarrow 0} \int_{\epsilon<|x|<1 / \epsilon} \phi(x) \frac{1}{x} d x=\left\langle\phi(x), \frac{1}{x}\right\rangle
$$

Show that $\left\langle\phi(x), \frac{1}{x}\right\rangle$ extends to a tempered distribution and compute the Fourier transform of this extension.

Proof. We need to show that for f in the Schwarz space we have that

$$
\lim _{\epsilon \rightarrow 0} \int_{\epsilon<|x|<1 / \epsilon} f(x) \frac{1}{x} d x
$$

exists. Write the integral as follows:

$$
\int_{\epsilon<|x|<1} \frac{f(x)-f(0)}{x-0} d x+\int_{\epsilon<|x|<1} \frac{f(0)}{x-0} d x+\int_{1 \leq|x|<1 / \epsilon} \frac{f(x)}{x} d x
$$

First of all note that the middle term is zero since the function $1 / x$ is odd. Secondly, the third term converges as f is rapidly decreasing (in particular, we have that $f(x) / x \leq 1 / x^{2}$ for large values of x, so we have convergence for the integral comparison test). Lastly, by the intermediate value theorem for derivatives, there is a point $c_{x} \in(0, x)$ such that $\frac{f(x)-f(0)}{x-0}=f^{\prime}\left(c_{x}\right)$, but note that f^{\prime} is going to be continuous, and in the interval $[0,1]$ we have that $\left|f^{\prime}\right| \leq M$, so we have that the first integral is finite as well.

To find the Fourier transform:
13 Using calculus of resides, prove that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=-\frac{7 \pi^{4}}{720}
$$

Hint: Consider the function $f(z)=\frac{1}{\sin \pi z}$
11 Let H be the space of all analysis functions F on the open unit disk with norm

$$
\|F\|_{H}=\left(\iint|F(z)|^{2} d x d y\right)^{1 / 2}<\infty
$$

a Prove that H is complete in this norm.
b Exhibit with proof a complete orthonormal basis for H
Proof. a Let $\left\{f_{n}\right\}$ be a Cauchy sequence in H. First of all note that $f_{n} \in L^{2}$, which is a Banach space. Hence, we have that $f_{n} \rightarrow f$ in the L^{2} norm to a function f. We shall show that f is indeed holomorphic.If we manage to show that $\left\{f_{n}\right\}$ is bounded in compact subsets of D, then we will be able to apply Montel's theorem, which will yield a subsequence of functions that converge uniformly in every compact subset of D. Since uniform limit of holomorphic functions is holomorphic, we would have that f is indeed holomorphic (the subsequence must have to converge to f).

Hence, we show that $\left\{f_{n}\right\}$ is bounded in compact subsets of D : Let K be a compact set of D, and let D_{r} be a closed disk containing K. We shall show that f is bounded in D_{r} instead. First note that since D has finite measure we have that $\|f\|_{1} \leq A\|f\|_{2}$ for some constant A and all $f \in L^{2}$. Also, since $\left\{f_{n}\right\}$ converge in the L^{2} norm, we have that there exists an M such that $\left\|f_{n}\right\|_{2} \leq M$
for all n. Hence, $\left\|f_{n}\right\|_{1} \leq A M$ for all n. We claim that $\sup _{z \in D_{r}}|f(z)| \leq B\|f\|_{1}$ for some B (putting all this together would give the desired bound).

$$
\|f\|_{1}=\int_{D}|f(z)| d z=\int_{0}^{2 \pi} \int_{0}^{1}\left|f\left(r e^{i \theta}\right)\right| r d r d \theta
$$

let r^{\prime} be such that $r<r^{\prime}<1$. Then we have that:

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{r^{\prime}}} \frac{f(w)}{w-z} d w \Rightarrow|f(z)| \leq \frac{1}{2 \pi} \int_{C_{r^{\prime}}} \frac{|f(w)|}{|w-z|} d w
$$

as $w \in C_{r^{\prime}}$, so we have that $|w-z|>\delta$ for some $\delta>0$. Thus,

$$
|f(z)| \leq \frac{1}{2 \pi \delta} \int_{C_{r^{\prime}}}|f(z)| d z=\frac{1}{2 \pi \delta} \int_{0}^{2 \pi}\left|f\left(r^{\prime} e^{i \theta}\right)\right| r^{\prime} d \theta
$$

this holds for any radius greater than r^{\prime}, so integrate both sides when the radius goes from r^{\prime} to 1 :

$$
\left(1-r^{\prime}\right)|f(z)| \leq \frac{1}{2 \pi \delta} \int_{r^{\prime}}^{1}\left|f\left(r e^{i \theta}\right)\right| r d \theta d r
$$

Thus,

$$
|f(z)| \leq \frac{1}{2 \pi \delta\left(1-r^{\prime}\right)} \int_{r^{\prime}}^{1}\left|f\left(r e^{i \theta}\right)\right| r d \theta d r \leq \frac{1}{2 \pi \delta\left(1-r^{\prime}\right)} \int_{0}^{1}\left|f\left(r e^{i \theta}\right)\right| r d \theta d r=\frac{\|f\|_{1}}{2 \pi \delta\left(1-r^{\prime}\right)}
$$

Hence, for f holomorphic we have that $\sup _{z \in K}|f(z)| \leq B\|f\|_{1}$ for a constant B. Hence we have the desired bound, and we are done by earlier remarks.
b

14 Find with proof the number of zeroes of the function $8 z^{4}+e^{2 z}$ on the closed unit disc in the complex plane.
Proof. Let $f=8 z^{4}$ and $g=e^{2 z}$, then we have that $|g(z)|<|f(z)|$ for all z in the unit circle, so $f+g$ has the same number of zeroes than f, which clearly has 4 (By Rouche's theorem).

15 Let f be differentiable at every point in $[0,1]$. Prove that there exists $x_{0} \in[0,1]$ such that $f^{\prime}(x)$ is continuous at x_{0}.
Proof. Define $f_{n}(x)=\frac{f(x)-f(x+1 / n)}{1 / n}$, then we have that $f_{n}(x) \rightarrow f_{n}^{\prime}(x)$ pointwise. Note that each f_{n} is continuous, so by problem 6, we have that there exists a point x_{0}, such that $f^{\prime}\left(x_{0}\right)$ is continuous.

4. TOpics On Functional analysis

4.1. Spectrum of an operator. The spectrum of an operator is the generalization of eigenvalues that we learned in linear algebra. Recall, in linear algebra, we said that λ was an eigenvalue for T if the operator $T-\lambda I$ was not injective. In reality, we are concerned with the set of λ such that $T-\lambda I$ is not invertible. Since in finite dimensions we have $\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{ran}(T)$, we have that $T-\lambda I$ was not surjective either. Note that this is not the case in infinite dimensions. We can have a λ such that $T-\lambda I$ is injective, but
fails to be surjective (consider the shift operator to the right). Hence, we have to develop some notions of different kinds of spectrum.
Definition 25. Let T be a bounded operator on a Banach space X. The spectrum of $T, \sigma(T)$, consists of all the scalars λ such that $\lambda I-T$ does not have an inverse that is a bounded operator. In this case, this is equivalent to the set of λ such that $\lambda I-T$ is not bijective.

It is convenient to note that the spectrum of an operator can be decomposed into the following three sets:
$1 \sigma_{p}(T)$: Point spectrum: The set of λ such that $\lambda I-T$ is not injective. Meaning, this is the set of eigenvalues.
$2 \sigma_{r}(T)$: Residual spectrum: The set of λ such that $\lambda I-T$ is injective, but does not have a dense range.
$3 \sigma_{c}(T)$: Continuous spectrum The set of λ such that $\lambda I-T$ is injective and has a dense range, but the range fails to be closed (meaning that it is not surjective)
Note that by definition we then have the following:

$$
\sigma(T)=\sigma_{p}(T) \cup \sigma_{r}(T) \cup \sigma_{c}(T)
$$

where the unions above are disjoint.
Lemma 26. $\sigma(T)$ is always a closed, bounded, non-empty set of the complex numbers.

5. Topics on Complex analysis

Theorem 27. The open mapping theorem: If $f: U \rightarrow \mathbb{C}$ is a nonconstant holomorphic function on a connected open set U, then $f(U)$ is an open in \mathbb{C}
Theorem 28. Maximum modulus principle: Let $U \subset \mathbb{C}$ be a domain. Let f be a holomorphic function on U. If there is a point $P \in U$ such that $|f(P)| \geq|f(z)|$ for all $z \in U$, then f is constant.

Proof. Assume that there is such a P. If f is not constant, by above we have that f is an open map. In particular there should be a neighborhood around $f(P)$ such that it is contained in $f(U)$, but this implies that there is a $\eta \in f(U)$ with $|\eta|>|f(P)|$ a contradiction.

Theorem 29. Maximum modulus principle: Let $U \subset \mathbb{C}$ be a bounded domain. Let f be a continuous function on \bar{U} that is holomorphic on U. Then the maximum value of $|f|$ on \bar{U} must occur in δU.

Proof. As $|f|$ is continuous on the compact set \bar{U} then it achieves its maximum. If $|f|$ is constant there is nothing to prove, so assume $|f|$ is not constant, then the maximum value of $|f|$ cannot happen in U, by our last theorem, so it must happen in δU.

The above has two important consequence:
(1) If $U \subset \mathbb{C}$ is a domain, f holomorphic in U, if there exists a P such that $|f|$ has a local maximum at P, then f is constant.
(2) If $U \subset \mathbb{C}$ is a domain, with $f(z) \neq 0$ for all $z \in U$. If there exists a $P \in U$ such that $|f(P)| \leq|f(z)|$ for all $z \in U$, then f is constant.

Department of Mathematics, Yale University
E-mail address: daniel.montealegre@yale.edu

