NOTES FOR THE ANALYSIS QUAL

DANIEL MONTEALEGRE

ABSTRACT. This are some notes I am typing for the analysis qual. I have received some
help from other current graduate students. I will be focusing on professor Margulis old
quals since he will be the one giving it out this coming spring.

1. THEOREMS TO KNOW (STATEMENT AND PROOF)

1 Monotone Convergence Theorem
2 Fatou’s Lemma
3 Dominated Convergence Theorem
4 Open Mapping Theorem
5 Riemann Mapping Theorem
6 Banach algebra, elements have non-empty spectrum
7 Baire Category Theorem
8 Spectral Theorem for self-adjoint compact operators
9 Holder’s inequality
10 Minkowsky inequality
11 Minkowsky inequality for integrals
12 Extreme Points for L' and L*
13 |7 = 7|

1.1. Monotone Convergence Theorem.

Theorem 1. Let X be a measurable space. Let {f,} be a monotonic sequence (i.e., f,(x) <
fni1(z) for all x € X) of non-negative measurable functions which converge pointwise to a func-
tion f. Then we have that f is measurable and moreover that lim [ f, = [ f.

Proof. 1t is easy to see that f is measurable. To see that the limit commutes with the
integral consider the following: As f,, < f,4+1 then we have that f,, < f, by taking integrals
we get that f [, since this holds for every n, we have that

i [ f,< [ 1

For the other direction, let o be any positive number strictly less than 1, and let ¢ be a
simple function such that ¢ < f. Then let E,, = {z | f.(x) > a¢(x)}. Since {f,} is a
monotonic sequence note that £y C E, C Es.... Also note that since f,, — f we have that

UFE; = X. Hence,
Jrz [ 5z [ aowr=a [ o)
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as n — oo we have
li > =
1m/f e . o(z) oz/gb(x)

Since this holds for every o < 1, it also holds for o = 1, and taking supremum over all

¢(z) yields:
i [ £, [ 1

just as desired. O

1.2. Fatou’s Lemma.

Theorem 2. Let {f,,} be a sequence of non-negative measurable functions, then
/ (liminf f,) < liminf / fn

Proof. The idea is to use the Monotone Convergence theorem. Hence, we have to con-
struct a monotonic sequence of functions. The natural way is to define g, = inf;>; f;. This
yields gi < gr+1 and moreover we have that lim;_,, g, = liminf f,. Hence,

lim/gk = /limgk = /liminffn

where the first equality above holds by MCT. Also, note that since g, < fi, so we have
that [ g, < [ fi. Take liminf at both sides to obtain:

liminf/gk < liminf/fk

but { f g} has a limit, so limin f agrees with lim, and by the line above we get:

/ liminf f,, < liminf / fn

It is important to note that strict inequality can hold. Consider f,1 to be:




and fs, to be

(2:2)

(0)0) (4,0)

then [ f, =4, soliminf [ f, = 4. Note however that lim inf f, is:

(1n1)

(0,0) (2,0)

and we get that [ liminf f, = 1. Hence strict inequality hapens.

1.3. Dominated Convergence theorem. Suppose {f,} is a sequence of measurable func-
tions that converge pointwise to f. If there exists a function g € L' such that

(@) <g(x)  (n=12.2€X)
then f € L' and

i [ 1f, 11 =0

i [ £, = [ f

Before we begin the proof let me state a couple of things. The convergence of the f, — f
does not have to be in X. It can happen a.e. and the result will be the same.

Proof. First of all note that since |f,| < g, then we have that |f| < g, so in particular we
will have that f € L'. Now note that |f — f,| < 2g, so we have:

2g = 2g — liminf |f — f,|
since liminf |f — f,,| = 0. Taking integrals at both sides:

/wzjbmmmmu—nw=/mmﬂw—u—mnwmm/w—u—n
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where the above inequality is given by Fatou’s. Then,
— [2gvtimint(- [ 17 g = [ 20t [17 -

fimsup [ 17~ £, <0

a sequence of non-negative numbers whose limit supremum is non-positive must con-
verge to 0. That is, lim [ |f — f,| = 0, just as desired. From here we get that | [ f — f,| <
[1f = fal = 0,50 [ f,, = [ f, which is the second conclusion. O

Thus,

1.4. Open Mapping theorem.

Theorem 3. Let T : X — Y be a surjective linear map between Banach spaces. Then T is open.

Proof. First of all note that it suffices to show that 7'(B; ) has an open ball around 0 (why?).
Denote by B. the open ball of radius e. Then we have that U2 ,7(B,,) = Y since T is
surjective. By Baire’s category theorem, we have that there is an n such that 7'(B,) is
not nowhere dense. By contraction, we can assume that 7'(B;) is not nowhere dense.

Hence, there exists an open set W such that W C T'(B,). Let yo € W and r > 0 be such

that B(yo,4r) C W (ball centered at y, or radius 4r). Then let y; = T'(x) be such that

lva — yo| < 2r. Then for any y € Y with |y| < 2r we have:
y=yi+y—y=T(x1) + (y—u)

note y — y; € B(yy, 2r) since |y| < 2r, so we have that

y=T(x1) + (y—y1) CT(B1)+ By,2r) CT(B1) + B(yo,4r) C T(B1) +T(B1) = T(B2)

dividing by 2, we obtain that if |y| < r then y € T(B;). In general, |y| < r/2™ will be in
T(By/2n).

Assume that |y| < /2, then y € T'(B1/2), so let x; € By, be such that |y — T'z;| < r/4.
Then we have that y — Tz, € T(By,4), s0 let x; € By/4 be such that |(y — T'zy) — T'xo| < r/8.
Then we have that y — T'xy — Tz, € T(By5). Recursively, obtain z,, € B s» to be such that
ly — >0 T(x;)] < r/2""1. Note that since | Y7, z;| < > 77, || < 1, we have that ) ;
converges to a point x (as X is Banach), so in particular we have that y = T'z, and since
r € By, we obtain that y € T'(B,). That is, we have shown that B, , C T'(By). O

1.5. Riemann Mapping Theorem.

Theorem 4. Let Q be a simply connected domain of C which is proper. Then there exists a
biholomorphic map from € to the unit disk.

Proof. We will split the proof into three steps. Some of the steps do not go into horrifying
detail since a sketch is what is sufficient and expected.

1 First we will prove that we can map (2 into a subset of the unit disk containing 0.
Hence, for the next two steps we will assume that 2 C D.

2 We will create a family of injective functions from (2 to D with the condition that
f£(0) = 0. We will look at the sup{|f’(0)|}, and we will show that there is a function
in our family that attains such a maximum using Montel’s theorem.

4



3 We will show that the function that we obtain in step 2 is actually surjective, and
hence the desired map we were looking for. We will do so by supposing that it is
not surjective, and then construction a function with a higher derivative at zero,
which would contradict the maximality condition that it ought to have.

Step 1: First of all since our (2 is proper, there is a o such that z — a does not vanish in
(1, since it is also simply connected, we have that we can define a branch of the logarithm
here:

£(2) = log(z — a)

by exponentiating both sides we see that f is an injective function. Secondly, pick a point
w € 2, we claim that there is a circle centered at f(w)+27i that does not meet f(£2). To see
this, assume that there is a sequence of points z, such that f(z,) — f(w) + 27i. Then we
have by taking exp at both sides that z, — w so by taking f again we get: f(z,) = f(w),
a contradiction. Hence, there is a § such that d(f(w) + 274, f(2)) > J. Define:

1
f(2) = (f(w) + 2mi)

hence, we have that |F(z)| < !, so we have that F(Q2) is an injective bounded function.
By translationg and scaling, we can assume that /" maps €2 into D and F'(0) = 0.

F(z) =

Step 2: Assume that {2 contains 0 and is contained in D by virtue of the previous step.
Define:

F={f:Q — D] fis holomorphic and injective and f(0) = 0}

note that F is not empty since it contains the identity. Now consider ¢ = sup{|f’(0)|}. Let
{f»} be a sequence of functions such that |f;,(0)| — ¢. Using Cauchy’s inequality we get
that F is uniformly bounded, so by Montel’s theorem, we get that there is a subsequence
of {f,} that converges uniformly on every compact set. By relabeling, assume that {f,}
does converge uniformly to the function f. Note that |f'(0)'| = ¢, and to see that f € F
we have to check a couple of things. Since f is the uniform limit of injective functions, we
have that f is either constant or injective. It cannot be injective since ¢ > 1 as the identity
inin F. Thus, f is injective. Also, we have that | f(z)| < 1, but by maximum modulus, we
have that |f(z)| < 1. The last condition is clear, f(0) = 0.

Step 3: We claim that the function f from step 2 is surjective. Assume it is not surjec-
tive, then there is an a € D such that « is not in the image of f. Then let g be the FLT
that interchanges 0 and /3 and let g be the square root function (which we can define in a
simply connected domain that does not contain 0). Consider the function:

FZ‘P;(L)OQOSOQOJC
It is easy to see that F'is injective that that F' takes 0 to 0. Solving for f we get:
f=®oF

Note that ® is not injective, so by Schwarz lemma, we have that |®'(0)] < 1. Hence,
|F'(0)| > |f'(0)|, a contradiction with the choice of f. Hence, f is indeed surjective. O
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1.6. Banach Algebra, elements have a non-empty spectrum. The question usually asks
to define a Banach algebra:

Definition 5. We say A is a Banach algebra if it is a Banach space, where we define a multiplica-
tion in A that satisfies the following properties:

lzyll < {l]lllyl]
z(a+b) = zxa+ zb (a+b)x = azx + bz z(ay) = a(zy) = (ax)y (za)b = z(ab)
where x,a,b € Aand a € F.

We usually assume that F = C and that A contains a unit element e such that ze = =z =
ex for all z € A. Define o(z) = {\ € C: x — Ae is not invertible}

Theorem 6. Let A be a Banach algebra (over the complex numbers) with unit. Then for any
x € A, o(x) is not empty.

Proof. Let z € A, and assume for sake of a contradiction that o(z) = (), then we have that
for \g € C, (x — A\oe) ™! # 0, so define ¢((x — Age) ') = ||(x — Aoe) ||. Then ¢ extends to a
bounded linear functional in all of A by Hanh-Banach. Define F' to be the following map:

F(A) = o((z—Xe)™)

where the above map is well defined for all A € C since we are assume that o(x) is empty.
Now note that

F(A) = ¢((z = xe)™) = (1/N)g((z/X —e) )
as A — oo, we have that z/A\—e — ¢,50 ¢((x/A—e)™!) — ¢(—e), and we see that F'(\) — 0.
If we manage to show that F' is holomorphic, then we would have that F' is entire and
by Liouville’s theorem it is constant, but it is constant that tends to 0, so it is the zero
function, but that is a contradiction since ¢ is not the zero functional.
Hence, it remains to prove that F'is indeed holomorphic:
. |F(A+he) — F(N\)|

o ]

1.7. Baire Category Theorem.

1.8. Spectral Theorem for self-adjoint compact operators.

Theorem 7. Let H be a Hilbert space (non-empty), and say T is a compact self-adjoint linear
operator. Then there exists an orthonormal basis consisting of eigenvectors. Moreover, we have
that for every € > 0, we only have finitely many (counting multiplicity) eigenvalues outside of the
ball of radius e

Proof. We first show that H must contain an eigenvector. First of all note that (7'z, z) € R
since 7' is self-adjoint. Then use the result that says that for 7" self-adjoint we have:
IT] = sup{|(Tz, z)| : ||| <1}

Then, let z,, be a sequence in B; (open ball of radius 1), such that [(T'z,, z,)| — ||T||, and
let A be such that (T'z,,,z,) — A, by previous remarks we have that A € R, and we have
that |A\| = ||T'||. Then we have that {T'z,,} is a sequence in T'(B;), so by compactness of T,
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we have that there exists a subsequence that converges. Up to relabeling, we can assume
that {T'z,,} converges, to say y. Note that

| T2 —A2p||? = (Txn—A1p, Tz —An) = || T2 ||*+ AT 2|2 —2MT 0, 2) < 202 —2XMT'yy, )
which tends to 0. Hence, we have that Ty = Ay because:
Ty =T(limTz,) =T(imAz,) = AlimT(z,) = \y

(second equality is due to the previous remark). Hence, we have that y is an eigenvalue.

Using Zorn’s lemma, choose a maximal set of orthonormal eigenvectors, call it E. Let
W be the closure of the span of £. We claim that W is equal to H. For sake of contra-
diction that W is properly contained in H. Then W+ is not empty. It is easy to see that
W is T-invariant, which makes W+ T-invariant as well. We can restric 7' to W+, and we
still have a compact, self-adjoint operator. Then applying the same argument as above,
we have that we can find an eigenvalue. A contradiction with the maximality given by
Zorn’s. Hence, W = H, just as desired.

For the last remark let ¢ > 0, and for sake of contradiction say that there are infinitely
many eigenvalues with multiplicity outside the ball of radius epsilon. Then for any two
eigenvectors v; # v, with corresponding eigenvalues \;, A, we have that

|Tvy — Toa||* = ||Toi||? + || Twa|]* = AT + A3 > 2¢

so since their distance is bounded below an infinite sequence will never have a convergent
subsequence, that is a contradiction since 7' is supposed to be compact. O

1.9. Holder’s inequality.

Theorem 8. Suppose 1 < p < oo and p, q Holder conjugates. If f and g are measurable functions
on X, then

1fglle < [/ 1lpllgllq

Proof. We will use Young’s inequality which states that if u,v > 0 then we have that
uv < uP/p +v?/q where p, q are Holder conjugates. Assuming this the rest of the problem
is very easy: First of all note that if || f||, = 0 then f = 0 a.e., and so fg = 0 a.e, so we have
the equality 0 = 0, also if || f||, = oo then it holds trivially (this is an abuse of notation,
when people write || f||, then assume that f € L? and thus it is a finite quantity). Similarly
for g. Then we can define:

ol
1 £l 9llq
Applying Young’s inequality:

p q p q
fol < Y |f|p Ig|q
£ 1Ipllglq pa  plfll> - dlglla
integrating both sides we get:
[1fgl 4
1£15llglq
as the desired result follows. O



1.10. Minkowski inequality.
Theorem 9. Let f, g € LP. Then we have that f + g € LP and moreover,
1f +gllp < [Ifllp + llglly

Proof. First we have to show that f + g € L?. To do so, consider the following;:
|f+gl” =1(2f)/2+ (29)/2]" < 12f1P/2 + 29]7/2
where the inequality comes from the convexity of z7. Thus,
|f +glP < 227 f P + 1gl”)
integrating at both sides shows us that f + g € L”. Now,

[f+gl =1f+allf +aP" < (f 1Dl f + g
integrating both sides:

I+l < / (If1+1gDIf + g = / I gl / gllf + P!

<ty + 1ot (f 07+ o) 1+ gl (fur+or) o

= (I£llp + llgllp)ILf + gll2~
and the result follows. O

1.11. Minkowsky inequality for integrals. Let (X, %, 1) and (Y, X,, v) be o-finite mea-
sure spaces. Let f : X XY — [0,00] be a measurable function, and let 1 < p < oc.

Then:
{(] fena) ante } < [ ([ stevran) " wiw

Proof. Note that if p = 1, then the theorem is just Tonelli’ s SO assume p > 1. First of all we
will consider the case when the function defined by F(z) = [,. f(z,y)dv(y) isin L?. Using
this result, we can always break the general case into thls one.

Let g € L? be any function with ||g||, < 1. Then,

[ Fals@line) = [ [ tapamls@lie = [ [ i@l
< [ ([ searaut ) (/ l9(x) du(e ) " ) ~lgl [ ([ st nrante ) " )
<(/ f(w,y)pdu(af)> " )

where on the second equality we used Tonelli’s and the inequality comes from Holder’s.
Taking supremum over g € L? with norm bounded by one we get:

irwl < ([ f(:v,y)pdu(w))l/p dv(y)
8



which is what we wanted to prove.

To prove it for the general case.Consider X; C X, C X3 C ...and Y C Y5 C Y5 C ...
such that UX; = X, UY; = Y and X,, and Y,, of finite measure. Then define f,(z,y) =
min{n, f(z,y)} in the space X,, x Y,. Hence, we have that f,, — f pointwise and mono-
tonic. Apply above to each f, and the result follows. O

1.12. Extreme points of L'[0,1] and L>[0,1]. Below denote by B; the closed unit ball.
Denote Ext(C') the set of extreme points of the set C.

Theorem 10. [n L we have that Ext(By) = {f : |f| = 1ae. }

Proof. Assume that f is in B, and that | f| # 1 a.e., then there must exist a set with positive
measure such that |f| < 1. Thatis, £ = {z : |f(z)| < 1} has positive measure. Define
E, ={z :|f(x)] <1—1/n}, then we have £ = UE,, and since E has positive measure,
there exists a set F,, with positive measure. Then define:

h“)‘{f@), g YW {f<:c>, P

note that h, g are both in B; and moreover f = %h + % g, and h # [ since they differ on
a set with positive measure. Hence, f is not an extreme point. Ergo, we have shown
Ext(By) C{f:|f|=1ae.}.

For the other inclusion, assume that f is such that |f| = 1 a.e., and write f as a convex
combination of two function in B;:

fla) = Ah(z) + (1 = A)g(z)
taking norms at both sides:
[f(@)] =1 = |A(z) + (1 = A)g(x)] < Ala(z)] + (1 = A)lg(z)[ <1

hence, the inequalities above are actually equalities. For that to hold we must have that
|h] =1 = |g| a.e., so we see that h and g take values on the unit circle in C, this is a stricly
convex space, so if there is a set with positive measure, E, such that i # g for z € E, then
Ah(z) + (1 — X)g(x) would be a point in the chord matching two distinct points in S;, so
it would have norm strictly less than 1, a contradiction because |f| cannot be less than 1
in a set of positive measure. Hence, g = h a.e., and it follows that f = ¢ = h a.e.,, and we
conclude that f is an extreme point. The desired result has been proven. O

Theorem 11. B, has no extreme points in L*[0, 1].
Proof. We first show that if B; does have extreme points, then they ought to be of norm
1: Let f € B, (0 # f) and say that ||f|| < 1 (I am using |.|| instead of ||.||; because this

part of the proof does not require the fact that we are in L'), then let ¢ > 0 be such that
|fIl + € <1and ||f|| > e. Then we have:

1l ) ;(an—e, )
d 2( TR
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the conditions on € guarantee that HﬂHG - fand Hﬂ‘ﬁe - f will be in B;. Hence, f is not an
extreme point.

Now we will need the fact that we are in L!. Assume that f is in B; and for sake of

contradiction that it is an extreme point. Then by the above argument, we have that
| flli = 1, that is:

Define

0
then we have that F' is a continous function, so we have that there exists a t € (0, 1) such

F(t) =1/2. Then,
h(x):{Qf(x), 0,4] g(m):{o, [0, 1]

0 (t,1] 2f(x), (t,1]
we have that ||2||; = ||g|i = 1, f # hand f = (1/2)h + (1/2)g, a contradiction. Hence, B,
has no extreme points. O
1.13. |T|| = |7l

Theorem 12. Let X be a Banach space, and let T' be a bounded linear operator, then ||T'|| = ||T||

Proof. The result is really easy if we assume that for an element x we have:

|| = sup{[f(=)[ : | € B}
where B, is the closed unit ball in X and By is the closed unit ball in X*. Assuming this
we have:

17| = sup{[|T'(z)] : = € B}

=sup{|f(T(z))| : z € By, f € B}}

= sup{|T"(f)(z)| : = € By, f € B}

= sup{||T*(f)|| : f € By}

=77
for sake of completeness we will include a proof of the fact we just used:

]| = sup{|f ()] - f € By}
note that for any f € B} we have that
f@ < [zl < [l

so we trivially have

]l = sup{[f ()] : f € B}

for the other inclusion. Let x be given. Define f(z) = |z||, and extend it to a linear
functional using Hanh Banach, to a function such that | f(y)| < ||y||, (meaning f € B;), so
we have that there is a function such that |f(z)| = ||z||, proving the other direction of the
inequality and the result follows. O
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2. THEOREMS TO KNOW HOW TO USE

Theorem 13. Rouche’s theorem: If the complex-valued functions f and g are holomorphic inside
and on some closed contour K, with |g(z)| < |f(z)|on K, then f and f + g have the same number
of zeros inside K, where each zero is counted as many times as its multiplicity

Theorem 14. Krein-Milman theorem: Let K be a nonempty set, compact, convex, of a locally
convex topological vector space X. Then K is the closed convex hull of its extreme points.

Theorem 15. Krein-Milman: Let K be a nonempty compact, convex subset of a locally convex
topological vector space X. Then K has an extreme point.

Theorem 16. Alaoglu’s theorem: X be a normed linear space. Then B* (closed unit ball in X*)
is compact with respect to the weak-* topology

Theorem 17. Stone-Weirstrass: X locally compact Hausdorff space and A is a subalgebra of
Co(X,R). Ais dense if and only if it separates points.

Theorem 18. Montel’s theorem: F = {f,} be a family of holomorphic functions on ) s.t. is
uniformly bounded on compact subsets of ). Then, F is a normal family (i.e., there exists a
subsequence in { f,,} that converges uniformly on every compact set of §2).

Theorem 19. Duality of L?: Let 1 < p < oo and let g be its Holder conjugate. Let (X, (2, j1) be
a measure space. For g € L9, define F,, : LP? — [ as follows:

%WZ/MW

Then F, € (LP)* and the map g — F, defines an isometric isomorphism of LY onto LP
If X is o-finite and g € L* and we define F, : L' — T by:

@mzfmw
then F, € (L')* and the map g — F, defines an isometric isomorphism of L> onto L'.

Theorem 20. Riesz Representation Theorem: If X is a locally compact space and p € M(X),
define F, : Cy(X) — F by

Ff) = [ fn
Then F,, € Co(X)* and the map j — F), is an isomorphism of M (X) onto Cy(X)*.

Theorem 21. Hanh-Banach Theorem: Let X be a vector space over R and let q be a sublinear
fucntional on X. If M is a linear manifold in X and f : M — R is a linear functional such that
f(z) < q(z) forall x € M, then there is a linear fnctional F' : X — R such that F' | M = f and
F(x) < q(x) forall x € X.

Theorem 22. Inverse Mapping Theorem: If X and Y are Banach spaces and A : X — Y isa
bounded linear transformation that is bijective, then A~ is bounded.

Remark 23. This follows trivially from the Open Mapping theorem since if the function is bijec-
tive then we can define A~" and to see that it is bounded, we just note that it is continuous since
A(U) is open if and only if U is open.
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Theorem 24. The Clsoed Graph Theorem: If X and Y are Banach spacesand A: X — Y isa
linear transformation such that the graph of A,

graA={r Az e X &Y :z € X}

is closed, then A is continuous.

3. PROBLEMS HE HAS ASKED BEFORE

1 Using calculus of residues, prove that

=1 v
nt 90
n=1
Hint: The laurent series for cot z = 1 — 1z — L2%..

Proof. Let Sy be the square with vertices at (£(N + 1/2), £(N + 1/2)) (with N a
positive integer). Consider the function f(z) = <4, Itis clear that we have simple
poles at the non-zero integers and that at 0 we have a pole of order 5. Applying
the residue theorem we obtain:

N

; f(z)dz = 2mi (Z res(f,i) + res(f, —Z)) + 27i - res(f,0)

=1

~~

Now we compute the residues. res(f,0) = —Z—; we can read from the Laurent

expansion. To find the simple poles, let k£ # 0 be an integer:
. cot mz 1 .
l%(z —k)- —i T l%coth(z — k)
1 11

[ sec2(mz)  wkt
If we manage to show that the integral on the left hand side goes to 0, then we

would have:
0 = 27i So 2 ) o _r
a — ikt 45

which clearly gives the desired result. Hence, all we have to do is show:

f(z)dz—0 as N — o0
SN

First we are going to show that in our contour S we have that
| cot(mz)| <2
for the vertical line on the right side we have that z = (N + 1/2) + iy:

_ |exp(im((N +1/2) +iy)) — exp(—in((N + 1/2) +iy))|
2

| cos(mz)|
0

2 Let A, ., = {z € C: 1 < |z| < ry}. Show that there is a biholomorphic mapping
0 Ay r — Ay, g, ifand only if Ry /71 = Ry /7. You may assume that ¢ extends to
a homeomorphism of the closed annulus and that log |¢(#)| is harmonic.
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Proof. One direction is completely trivial. For the other direction we will assume
that r; = r, = 1 (by scaling), so say there is a biholomorphic map from A; to A,.
We will show that R, = R».

We first prove the following lemma. With the conditions above we have:

1 If limp, 1 [@(2)| = 1, then lim). g, |@(2)] = R

2 If limy. 1 |@(2)] = Ry, then limy, g, [p(2)] =1
We shall prove this fact later. Assuming this, we can always assume that (1) hap-
pens because if (2) holds we can substitute ¢ for Ry/p, and this is still a biholo-
morphic map from A; to A, such that the first condition is the one that holds.
Define a function h(z) = log|z| — }gg—g; log |p(z)]. Extend h to the closure of A;.
Since (1) is the condition that holds we have that h(z) — 0 as |z| — O and |z| — R;.
Then, since we can assume that this function is harmonic, by Maximum modulus
principle we have that i must be the zero function. It follows that:

log R
log |z] = logR: log |¢(2)]

Hence,
[21” = le(2)]

where § = log Ry/log R;. Let P € Aj, and let D,(P) be a disk centered at P
and with r such that D,(P) is contained in A;. Then since we have a function
that does not vanish and since the disk is simply connected we can define z° by
e°8(*)8 by picking a branch of the logarithm. Hence, we have that g(2) = ¢(z)/2"
is a holomorphic function on the open disk D,(P), but note that |g(z)| = 1, so in
particular the image of g is not open. By open mapping theorem, we must have
that g is a constant map. That is, ¢(2) = ¢?2°. We can do this for each point of 4;,
and since the function is continuous we have that p(z) = €2 in the entire anuli

A,. This however is only possible when /3 is an integer, and since ¢ is injective, we
have that 5 = 1. Hence, R, = R.». O

3 Let T be the Fourier transform on L(R) given by

150 = [ s v e L®N PR
What is the spectrum of 77 Justify your answer.

Proof. First of all note that since T(T(f)) = f(—x), we have that T* = I. Then
using the identity:

a(p(T)) = p(a(T))
for p(z) = 2*, we have that 1 = (¢(T))*, so every element of ¢(T) is a fourth root
of unity. To show that this are actually all the points in the spectrum, we will show
that they are eigenvalues. {£1, £i}: O

4 Let ;1 be a finite, complex Borel measure on the real line, and suppose that for all ¢

real,
/ e du(r) =0

oo
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Prove that 1 is the zero measure.
Proof. O

5Letl < p < oo, and let X be a closed convex subset of L?([0, 1], dx). Show that
there is a point in X which is at the smallest distance from the origin.

Proof. First we will use the fact that L? is uniformly convex: If for every e > 0 there
exists a § > 0 such that for any two vectors z,y with ||z|| = ||y|| = 1 the condition
|z — y|| > eimplies that || =32 <1 —4.

Let ¢ = inf{||z| : = € X}. If ¢ = 0, then we are done, since it would imply
that 0 € X as X is closed. Hence, say ¢ > 0, and by scaling we can assume that
c=1.

Let {z,} be a sequence such that {m} goes to 1. We will show that this latter
sequence is Cauchy. We have:

1 > Sl + 1
2 2 2 2
Note that since {||z,||} — 1 from above, we have that {”i—:”} — x,, SO We can
choose N large enough so that n > N implies

1

Tn

[EA|

Tm

[

T Tm

lzall llml]

Tn Lm

Tn

[

— x|l <6

also note that since X is a convex set we have that %(mn + z,,) € X, so we have
slzn + 2l = 1, thus:

L ‘ Tn T ‘ S1_5
2 Hzall  llzmll
since we are in a uniformly convex space, we must have that
Tn _ Tm ‘ oy
lznll |zl

for n,m > N. Thus, the sequence is Cauchy. This implies that {z,} is Cauchy
Lm

.Tn ‘

and we can make the terms on the right arbitrary small. Thus, we have that {z,}
converges to a point x, and since X is closed we have that x € X. More over note
that since norm is a continous function, we have that 1 = lim ||z, || = ||limz,| =
||z||, so we have a point that achieves the minimum distance to the origin.

|

To show uniqueness of the point we will use the uniform convexity again. Say
that there are two points 2 and 2’ in our set X such that they are of norm 1. Then
we can find an € > 0 such that |z — 2'|| > ¢, but by above, we have that there exists

a 6 > 0 such that H%””’H < 1 — 4, so in particular we have that  + 2’ is in X, so

14



we found a point on our set with norm less than 1, contradicting the fact that the
infimum norm was 1. O

6 Prove or disprove the following statement: If { f,, } is a sequence of continous func-
tions on [0, 1] which converges pointwise to a function f, then there exists a point
xo € [0, 1] such that f is continous at z.

Proof. For a given integer NV and ¢ > 0 we define the set:
An(e) ={z : |fulz) — fm(2)| <€ Vn,m > N}

Note that Ay(e) is a closed set. For any fixed ¢, we have the inclusions A;(¢) C
Aj(€) C .... The union of this sets is all of X since we have that f,,(z) converges for
any fixed z, so the sequence { f,,(x)} is Cauchy and R is complete. Now define:

Ule) = | J int(Ax(e))

We will first prove that U (¢) is open and dense in X and using the Baire category
theorem we would have that the set C' =) U(1/n) is dense and then we shall
prove that f is continous in C'.

nEZy

Ul(e) is open and dense: Let V' be an arbitrary open set and we want to show
that there is an NV so that V' Nint(An(e€)) is not empty. First of all note that the set
V Nint(An(e)) is closed in V, and since V' C X, we have that V' is also a Baire
space, meaning that there is an m so that V Nint(A,,(¢)) not nowhere dense, i.e., it
must contain a nonempty set W of V. Because V is open in X, the set IV is open in
X therefore, it is contained in intA,,(¢).

f is continuous at C: Given ¢ > 0, we shall find a neighborhood W of z, such
that | f(z) — f(zo)| < e for all » € W. First choose k so that 1/k < £. Since z € C,
we have that + € U(1/k) for a big enough k; therefore there is an N such that
zo € int(An(1/k)). Finally, continuity of the function fy enables us to choose a
neighborhood W of z, contained in Ay(1/k), such that

|fn(x) — fn(zo)| < €/3 reW

The fact that W C Ay (1/k) implies that
\fo(z) = fn(2)| <1k n>NazeW

letting n — co we get:

f(x) = fn(@)| <1k weW
as xo € W we trivially have

|f (o) — fv(wo)| < 1/

thus we have,

1f(x) = f(zo)]<e xeW

just as desired. O
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7 a Suppose {F,} is a sequence of functions on L>(]0, 1], dz) with norm bounded
by 1, || F||cc < 1. Prove or disprove the following statement:

There is a subsequence {F,,, } such that for all G € L'([0, 1], dz),
1

lim F,, (2)G(z)dx
k—oo [
exists.
b Suppose {F,} is a sequence of functions on L*([0, 1], dz) with norm bounded
by 1, ||[F||; < 1. Prove or disprove the following statement:

There is a subsequence { F},, } such that for all G € L>(][0, 1], dz),
1

lim F,, (2)G(z)dx

k—o0 0

exists.

Proof.  a For this part we are going to use the fact that L> = (L')*. For each
F,, € L™ there corresponds a linear functional in L!, call it ¢,, and moreover
the functional is given by the following:

on(G) = /FnG

for all G € L'. Then, by Alaoglu’s theorem, we have that the closed ball of
radius 1 is closed in (L')* is compact with respect to the weak-* topology,
in particular, since ||¢,|| = ||F.|| < 1, we have that {¢,} is in such ball, so
there exists a convergent subsequence. {¢,, }, but by definition of the weak-x
topology, convergence of ¢,, means convergence with respect to evaluation.
That is, for all G € L', limy_,« ¢n, (G) converges, which is precisely what we
wanted to prove.
b For a counterexample do the following construction:
U

8 Let C' C [0,1/2] be a closed subset of Lebesgue measure zero. Suppose that f(z) is
a bounded holomorphic function on D\C where D = {z € C : |z] < 1}. Prove that
f can be extended to a holomorphic function on D

Proof. Define g(z) as follows:
gw) = — [ L&) 4,

211 o Z W

where 1, is the circle of radius r and |w| < r (with 1/2 < r < 1). First of all note that
g(w) is well defined, that is if < 7/, then the definition of g(w) is unambiguous as
% is holomorphic in the anulus {z : r < |z| < '}, so we can homotope 7, to 7,/
without changing the value of the integral. Hence, for any w € D we can define
g(w). We want to show two things: That g agrees with f in D\C and secondly that

g is holomorphic.

16



(1)

For the first part: Let w € D\C. Then since C'is closed there exists an open ball B
withw € Band B C D\C. O

9 Find with proof the number of zeros of the function 92° + ¢** on the closed unit
disc in the complex plane.

Proof. Let f = 92 and let g = €%, then for |z| = 1, we have that |f(z)] = 9 and
|9(2)| = |e¥] = |e*Fe®)| < % < 9, then we have that f (which clearly has 6 zeroes,
has the same number of zeroes as 92° + ¢?* by Rouche’s theorem. O

10 Let X be a Banach space, and let A and B be closed linear subspaces.
a Assume that

inf{fle —yll -z € Ay e B, |z =y =1} =6 >0

Show that A + Bis closed in V.
b Assume that A+ B =V and AN B = {0}. Show that the condition in part a
must be true.

Proof. The idea of the proof will be the bound
c(llall +6ll) < fla+ ol

because if we do so, then we would have the following: Let {c,} be Cauchy in
C = A+ B, so rewrite it as {¢,} = {a, + b,} witha, € A and b, € B. Then we
would have that for large n, m:

€ > |lan + by — (am + bi)||

= ||an — @m + b — || > c1([|an — | + [[bn — bi||) > c1llan — an|

hence {a,} is Cauchy and so is {b,}. As A and B are closed, we have that a,, — «
and b, — bwitha € Aand b € B, so we have thata,, +b, — a+b & A+ B. That
is, A + B is closed.

To show that ¢(||a|| + ||b]]) < ||a + b|| we will proceed as follows: First we assume
that ||la|| + ||b]| = 1 and we show that:

min{d, 1}

inf{la +bf| : flaf] + o] = 1} 2 ¢ := ——

First of all note that if | ||a]| — ||b]|| > ¢, then we have that ||a + b|| > ||a|| — ||b]| and
la+ 0] > 16|l — ||a||, so we have that ||a + b|| > |||a|| — [|b]|]] > ¢. Thus, assume that
[llal| = ||b]]| < ¢. Note that this implies that a # 0 because otherwise we would have
that 0 + ||b|| = ||a|| + ||b]] = 1 and ||b]| < ¢ so we would have 1 < ¢ a contradiction
with the definition of ¢ (this is why in the definition of ¢ we use the min{1, §}, that
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way we ensure that both a and b are non-zero. Hence,

lla -+ b ‘ @ a b b H
a =la— —— 4+ — - 4
el 2t 3l T 2
o R e B e
> |la — — —
el | 2hel ~ 2700 o
1 a b 1
ST O A Y
el = 51+ g = 2p ! — 1100 = 3
) 1 1
> % Jlall - 21 = [1bll - 31
) ) ) )
Sl —pel > 2 —es S0 0

so we see that (1) is proven. To see how this implies that ¢(]|a|| + ||0]|) < ||a + b|| for
general a and b, just note:
a

+
’ lall + 1ol {lall + flo]
multiplying both sides by (||a|| + ||b||) gives the desired result.

Ex

For the second part first let () be the quotient map by A. Thatis @ : X — X/A.
Then since A is closed we have that X /A is a Banach space, and moreover, we have
that the restriction of () to B, call it 7" will be surjective (as A+ B = X) and injective
(as AN B = {0}). Then by the Banach open theorem, we have that 7" is an open
map. This is equivalent of saying that 7! is continuous. Now assume for sake of
contradiction that

inf{[la —b] :a € A,b € B, |[z]| = ||yl =1} = 0

then we can find a sequence {a, — b, } such that ||a,| = 1 = ||b,|| with a, € A
and b, € B and a,, — b, — 0. Then note the following: a, — b, — 0 implies that
Q(a, —b,) — 0. Hence, a,, — b, — 0. Thus we have:

0=T7"40) = T"'(lima, — b,) = lim(T*(a, — b,)) = im(T~4(b,)) = lim(b,,)
a contradiction since ||b,|| = 1, so their limit cannot be 0. O

11 Let ¢* be the Hilbert space of sequences a = {a,},n < 1, such that > |a,|? con-
verges, with the hermitian product

<a> B> = Z ana
Let T" be the shift operator, that is
T(Cl/) = (Oa ay, dg, )

Compute the spectrum of 7.
12 For functions ¢ € C§°(R) define the principal value integral against 1/ by
. 1 1
lim ¢(z)—dz = (¢(z), —)

=0 e<|z|<1/e z T
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Show that (¢(z), 1) extends to a tempered distribution and compute the Fourier
transform of this extension.

Proof. We need to show that for f in the Schwarz space we have that

lim f(x)—dx

e—0 e<|z|<1/e T

exists. Write the integral as follows:

f@) - £(0) 1) @)
/e<|:E<1 z—0 ot /e<|:t<1 xr— de - /1§x|<1/e x o

First of all note that the middle term is zero since the function 1/x is odd. Sec-
ondly, the third term converges as f is rapidly decreasing (in particular, we have
that f(z)/z < 1/xz* for large values of z, so we have convergence for the integral
comparison test). Lastly, by the intermediate value theorem for derivatives, there
is a point ¢, € (0,z) such that w = f'(c;), but note that f’ is going to be
continuous, and in the interval [0, 1] we have that |f'| < M, so we have that the

first integral is finite as well.
To find the Fourier transform: O
13 Using calculus of resides, prove that
i S B Tl
~ pt 720

Hint: Consider the function f(z) = =

sin 7z

11 Let H be the space of all analysis functions F' on the open unit disk with norm

HFMI(//MVWM@yﬂ<m

a Prove that I is complete in this norm.
b Exhibit with proof a complete orthonormal basis for H

Proof.  a Let{f,} beaCauchy sequence in H. First of all note that f,, € L?, which
is a Banach space. Hence, we have that f,, — f in the L? norm to a function f.
We shall show that f is indeed holomorphic.If we manage to show that {f,}
is bounded in compact subsets of D, then we will be able to apply Montel’s
theorem, which will yield a subsequence of functions that converge uniformly
in every compact subset of D. Since uniform limit of holomorphic functions is
holomorphic, we would have that f is indeed holomorphic (the subsequence
must have to converge to f).

Hence, we show that {f,} is bounded in compact subsets of D: Let K be a
compact set of D, and let D, be a closed disk containing /K. We shall show
that f is bounded in D, instead. First note that since D has finite measure we
have that || f||; < Al f]|» for some constant A and all f € L2 Also, since {f,}
converge in the L? norm, we have that there exists an M such that || f,,[ls < M
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for all n. Hence, || f,|1 < AM for all n. We claim that sup,.,_|f(2)| < Bl f|
for some B (putting all this together would give the desired bound).

21 1
széﬁ@mzA‘Amemw

let ' be such that r < v’ < 1. Then we have that:

10 =5 [ w0125 [

21 Jo, w—z |_27r

as w € C,s, so we have that |w — z| > J for some § > 0. Thus,

1 1 27
6N < 55 [ 190N = g [ st

this holds for any radius greater than r’, so integrate both sides when the
radius goes from r’ to 1:

(A= E) < 5 [ e lravar
Thus,

1 ' : 1 £1I1
- - < - i N L LE
| < 27“5 / |f(re* |7’d6’d7‘ 20— 1) /0 |f(re)|rdfdr 2mo(1— 1)

Hence, for f holomorphic we have that sup, . | f(2)| < B||f|: for a constant
B. Hence we have the desired bound, and we are done by earlier remarks.
b

£ (2)

O

14 Find with proof the number of zeroes of the function 8z* + €% on the closed unit
disc in the complex plane.

Proof. Let f = 82% and g = €, then we have that |g(z)| < |f(z)| for all z in the
unit circle, so f + g has the same number of zeroes than f, which clearly has 4 (By
Rouche’s theorem). O

15 Let f be differentiable at every point in [0, 1]. Prove that there exists z, € [0, 1] such
that f/(x) is continuous at .

Proof. Define f,(z) = W, then we have that f,(z) — f,(z) pointwise.
Note that each f,, is continuous, so by problem 6, we have that there exists a point
xg, such that f’(z¢) is continuous. O

4. TOPICS ON FUNCTIONAL ANALYSIS

4.1. Spectrum of an operator. The spectrum of an operator is the generalization of eigen-
values that we learned in linear algebra. Recall, in linear algebra, we said that A\ was an
eigenvalue for 7' if the operator 7' — Al was not injective. In reality, we are concerned
with the set of A such that 7" — A is not invertible. Since in finite dimensions we have
dim V' = dimker(7") + dim ran(T"), we have that 7" — I was not surjective either. Note that
this is not the case in infinite dimensions. We can have a X such that 7'— A/ is injective, but
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fails to be surjective (consider the shift operator to the right). Hence, we have to develop
some notions of different kinds of spectrum.

Definition 25. Let T' be a bounded operator on a Banach space X. The spectrum of T, o(T),
consists of all the scalars X such that \I — T does not have an inverse that is a bounded operator.
In this case, this is equivalent to the set of A such that \I — T is not bijective.

It is convenient to note that the spectrum of an operator can be decomposed into the
following three sets:

1 0,(T): Point spectrum: The set of A such that A/ — 7" is not injective. Meaning, this
is the set of eigenvalues.

2 0,(T): Residual spectrum: The set of A such that A\] — T is injective, but does not
have a dense range.

3 0.(T): Continuous spectrum The set of A such that A/ — T is injective and has a
dense range, but the range fails to be closed (meaning that it is not surjective)

Note that by definition we then have the following:
o(T)=0,(T)Uo.(T)Uoc.(T)
where the unions above are disjoint.

Lemma 26. o(T') is always a closed, bounded, non-empty set of the complex numbers.

5. Torics ON COMPLEX ANALYSIS

Theorem 27. The open mapping theorem: If f : U — C is a nonconstant holomorphic function
on a connected open set U, then f(U) is an open in C

Theorem 28. Maximum modulus principle: Let U C C be a domain. Let f be a holomorphic
function on U. If there is a point P € U such that |f(P)| > |f(z)| for all = € U, then f is
constant.

Proof. Assume that there is such a P. If f is not constant, by above we have that f is
an open map. In particular there should be a neighborhood around f(P) such that it is
contained in f(U), but this implies that there isa n € f(U) with |p| > |f(P)| a contradic-
tion. 0

Theorem 29. Maximum modulus principle: Let U C C be a bounded domain. Let f be a
continuous function on U that is holomorphic on U. Then the maximum value of |f| on U must
occur in oU.

Proof. As |f] is continuous on the compact set U then it achieves its maximum. If | f| is
constant there is nothing to prove, so assume | f| is not constant, then the maximum value
of | f| cannot happen in U, by our last theorem, so it must happen in 6U. O

The above has two important consequence:

(1) If U C Cis a domain, f holomorphic in U, if there exists a P such that |f| has a
local maximum at P, then f is constant.

(2) It U C Cis a domain, with f(z) # 0 for all z € U. If there exists a P € U such that
|f(P)| < |f(z)] forall z € U, then f is constant.
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