
NOTES FOR THE ANALYSIS QUAL

DANIEL MONTEALEGRE

ABSTRACT. This are some notes I am typing for the analysis qual. I have received some
help from other current graduate students. I will be focusing on professor Margulis old
quals since he will be the one giving it out this coming spring.
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1.1. Monotone Convergence Theorem.

Theorem 1. Let X be a measurable space. Let {fn} be a monotonic sequence (i.e., fn(x) ≤
fn+1(x) for all x ∈ X) of non-negative measurable functions which converge pointwise to a func-
tion f . Then we have that f is measurable and moreover that lim

∫
fn =

∫
f .

Proof. It is easy to see that f is measurable. To see that the limit commutes with the
integral consider the following: As fn ≤ fn+1 then we have that fn ≤ f , by taking integrals
we get that

∫
fn, since this holds for every n, we have that

lim

∫
fn ≤

∫
f

For the other direction, let α be any positive number strictly less than 1, and let φ be a
simple function such that φ ≤ f . Then let En = {x | fn(x) ≥ αφ(x)}. Since {fn} is a
monotonic sequence note that E1 ⊂ E2 ⊂ E3.... Also note that since fn → f we have that
∪Ei = X . Hence, ∫

fn ≥
∫
En

fn ≥
∫
En

αφ(x) = α

∫
En

φ(x)
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as n→∞we have

lim

∫
fn ≥ α

∫
En

φ(x) = α

∫
φ(x)

Since this holds for every α < 1, it also holds for α = 1, and taking supremum over all
φ(x) yields:

lim

∫
fn ≥

∫
f

just as desired. �

1.2. Fatou’s Lemma.

Theorem 2. Let {fn} be a sequence of non-negative measurable functions, then∫
(lim inf fn) ≤ lim inf

∫
fn

Proof. The idea is to use the Monotone Convergence theorem. Hence, we have to con-
struct a monotonic sequence of functions. The natural way is to define gk = infi≥k fi. This
yields gk ≤ gk+1 and moreover we have that limk→∞ gk = lim inf fn. Hence,

lim

∫
gk =

∫
lim gk =

∫
lim inf fn

where the first equality above holds by MCT. Also, note that since gk ≤ fk, so we have
that

∫
gk ≤

∫
fk. Take lim inf at both sides to obtain:

lim inf

∫
gk ≤ lim inf

∫
fk

but {
∫
gk} has a limit, so lim inf agrees with lim, and by the line above we get:∫

lim inf fn ≤ lim inf

∫
fn

�

It is important to note that strict inequality can hold. Consider f2n+1 to be:

(0, 2)

(−2, 0) (2, 0)
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and f2n to be

(0, 0)

(2, 2)

(4, 0)

then
∫
fn = 4, so lim inf

∫
fn = 4. Note however that lim inf fn is:

(0, 0)

(1, 1)

(2, 0)

and we get that
∫

lim inf fn = 1. Hence strict inequality hapens.

1.3. Dominated Convergence theorem. Suppose {fn} is a sequence of measurable func-
tions that converge pointwise to f . If there exists a function g ∈ L1 such that

|fn(x)| ≤ g(x) (n = 1, 2, ...;x ∈ X)

then f ∈ L1 and

lim

∫
|fn − f | = 0

lim

∫
fn =

∫
f

Before we begin the proof let me state a couple of things. The convergence of the fn → f
does not have to be in X . It can happen a.e. and the result will be the same.

Proof. First of all note that since |fn| ≤ g, then we have that |f | ≤ g, so in particular we
will have that f ∈ L1. Now note that |f − fn| ≤ 2g, so we have:

2g = 2g − lim inf |f − fn|
since lim inf |f − fn| = 0. Taking integrals at both sides:∫

2g =

∫
(2g − lim inf |f − fn|) =

∫
lim inf(2g − |f − fn|) ≤ lim inf

∫
2g − |f − fn|
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where the above inequality is given by Fatou’s. Then,

=

∫
2g + lim inf(−

∫
|f − fn|) =

∫
2g − lim sup

∫
|f − fn|

Thus,

lim sup

∫
|f − fn| ≤ 0

a sequence of non-negative numbers whose limit supremum is non-positive must con-
verge to 0. That is, lim

∫
|f − fn| = 0, just as desired. From here we get that |

∫
f − fn| ≤∫

|f − fn| → 0, so
∫
fn →

∫
f , which is the second conclusion. �

1.4. Open Mapping theorem.

Theorem 3. Let T : X → Y be a surjective linear map between Banach spaces. Then T is open.

Proof. First of all note that it suffices to show that T (B1) has an open ball around 0 (why?).
Denote by Bε the open ball of radius ε. Then we have that ∪∞n=1T (Bn) = Y since T is
surjective. By Baire’s category theorem, we have that there is an n such that T (Bn) is
not nowhere dense. By contraction, we can assume that T (B1) is not nowhere dense.
Hence, there exists an open set W such that W ⊂ T (B1). Let y0 ∈ W and r > 0 be such
that B(y0, 4r) ⊂ W (ball centered at y0 or radius 4r). Then let y1 = T (x) be such that
|y1 − y0| ≤ 2r. Then for any y ∈ Y with |y| < 2r we have:

y = y1 + y − y1 = T (x1) + (y − y1)
note y − y1 ∈ B(y1, 2r) since |y| < 2r, so we have that

y = T (x1) + (y − y1) ⊂ T (B1) +B(y1, 2r) ⊂ T (B1) +B(y0, 4r) ⊂ T (B1) + T (B1) = T (B2)

dividing by 2, we obtain that if |y| < r then y ∈ T (B1). In general, |y| < r/2n will be in
T (B1/2n).
Assume that |y| < r/2, then y ∈ T (B1/2), so let x1 ∈ B1/2 be such that |y − Tx1| < r/4.
Then we have that y−Tx1 ∈ T (B1/4), so let x2 ∈ B1/4 be such that |(y−Tx1)−Tx2| < r/8.
Then we have that y−Tx1−Tx2 ∈ T (B1/8). Recursively, obtain xn ∈ B1/2n to be such that
|y −

∑n
i=1 T (xi)| < r/2n+1. Note that since |

∑∞
i=1 xi| ≤

∑∞
i=1 |xi| < 1, we have that

∑
xi

converges to a point x (as X is Banach), so in particular we have that y = Tx, and since
x ∈ B1, we obtain that y ∈ T (B1). That is, we have shown that Br/2 ⊂ T (B1). �

1.5. Riemann Mapping Theorem.

Theorem 4. Let Ω be a simply connected domain of C which is proper. Then there exists a
biholomorphic map from Ω to the unit disk.

Proof. We will split the proof into three steps. Some of the steps do not go into horrifying
detail since a sketch is what is sufficient and expected.

1 First we will prove that we can map Ω into a subset of the unit disk containing 0.
Hence, for the next two steps we will assume that Ω ⊂ D.

2 We will create a family of injective functions from Ω to D with the condition that
f(0) = 0. We will look at the sup{|f ′(0)|}, and we will show that there is a function
in our family that attains such a maximum using Montel’s theorem.
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3 We will show that the function that we obtain in step 2 is actually surjective, and
hence the desired map we were looking for. We will do so by supposing that it is
not surjective, and then construction a function with a higher derivative at zero,
which would contradict the maximality condition that it ought to have.

Step 1: First of all since our Ω is proper, there is a α such that z − α does not vanish in
Ω, since it is also simply connected, we have that we can define a branch of the logarithm
here:

f(z) = log(z − α)

by exponentiating both sides we see that f is an injective function. Secondly, pick a point
w ∈ Ω, we claim that there is a circle centered at f(w)+2πi that does not meet f(Ω). To see
this, assume that there is a sequence of points zn such that f(zn) → f(w) + 2πi. Then we
have by taking exp at both sides that zn → w so by taking f again we get: f(zn) → f(w),
a contradiction. Hence, there is a δ such that d(f(w) + 2πi, f(Ω)) > δ. Define:

F (z) =
1

f(z)− (f(w) + 2πi)

hence, we have that |F (z)| < δ−1, so we have that F (Ω) is an injective bounded function.
By translationg and scaling, we can assume that F maps Ω into D and F (0) = 0.

Step 2: Assume that Ω contains 0 and is contained in D by virtue of the previous step.
Define:

F = {f : Ω→ D | f is holomorphic and injective and f(0) = 0}

note that F is not empty since it contains the identity. Now consider c = sup{|f ′(0)|}. Let
{fn} be a sequence of functions such that |f ′n(0)| → c. Using Cauchy’s inequality we get
that F is uniformly bounded, so by Montel’s theorem, we get that there is a subsequence
of {fn} that converges uniformly on every compact set. By relabeling, assume that {fn}
does converge uniformly to the function f . Note that |f ′(0)′| = c, and to see that f ∈ F
we have to check a couple of things. Since f is the uniform limit of injective functions, we
have that f is either constant or injective. It cannot be injective since c ≥ 1 as the identity
in in F . Thus, f is injective. Also, we have that |f(z)| ≤ 1, but by maximum modulus, we
have that |f(z)| < 1. The last condition is clear, f(0) = 0.

Step 3: We claim that the function f from step 2 is surjective. Assume it is not surjec-
tive, then there is an α ∈ D such that α is not in the image of f . Then let ϕβ be the FLT
that interchanges 0 and β and let g be the square root function (which we can define in a
simply connected domain that does not contain 0). Consider the function:

F = ϕ−1g(α) ◦ g ◦ ϕα ◦ f

It is easy to see that F is injective that that F takes 0 to 0. Solving for f we get:

f = Φ ◦ F

Note that Φ is not injective, so by Schwarz lemma, we have that |Φ′(0)| < 1. Hence,
|F ′(0)| > |f ′(0)|, a contradiction with the choice of f . Hence, f is indeed surjective. �
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1.6. Banach Algebra, elements have a non-empty spectrum. The question usually asks
to define a Banach algebra:

Definition 5. We say A is a Banach algebra if it is a Banach space, where we define a multiplica-
tion in A that satisfies the following properties:

‖xy‖ ≤ ‖x‖‖y‖
x(a+ b) = xa+ xb (a+ b)x = ax+ bx x(αy) = α(xy) = (αx)y (xa)b = x(ab)

where x, a, b ∈ A and α ∈ F.

We usually assume that F = C and that A contains a unit element e such that xe = x =
ex for all x ∈ A. Define σ(x) = {λ ∈ C : x− λe is not invertible}

Theorem 6. Let A be a Banach algebra (over the complex numbers) with unit. Then for any
x ∈ A, σ(x) is not empty.

Proof. Let x ∈ A, and assume for sake of a contradiction that σ(x) = ∅, then we have that
for λ0 ∈ C, (x− λ0e)−1 6= 0, so define φ((x− λ0e)−1) = ‖(x− λ0e)−1‖. Then φ extends to a
bounded linear functional in all of A by Hanh-Banach. Define F to be the following map:

F (λ) = φ((x− λe)−1)
where the above map is well defined for all λ ∈ C since we are assume that σ(x) is empty.
Now note that

F (λ) = φ((x− λe)−1) = (1/λ)φ((x/λ− e)−1)
as λ→∞, we have that x/λ−e→ e, so φ((x/λ−e)−1)→ φ(−e), and we see that F (λ)→ 0.
If we manage to show that F is holomorphic, then we would have that F is entire and
by Liouville’s theorem it is constant, but it is constant that tends to 0, so it is the zero
function, but that is a contradiction since φ is not the zero functional.
Hence, it remains to prove that F is indeed holomorphic:

lim
h→0

|F (λ+ he)− F (λ)|
|h|

�

1.7. Baire Category Theorem.

1.8. Spectral Theorem for self-adjoint compact operators.

Theorem 7. Let H be a Hilbert space (non-empty), and say T is a compact self-adjoint linear
operator. Then there exists an orthonormal basis consisting of eigenvectors. Moreover, we have
that for every ε > 0, we only have finitely many (counting multiplicity) eigenvalues outside of the
ball of radius ε

Proof. We first show that H must contain an eigenvector. First of all note that 〈Tx, x〉 ∈ R
since T is self-adjoint. Then use the result that says that for T self-adjoint we have:

‖T‖ = sup{|〈Tx, x〉| : ‖x‖ ≤ 1}
Then, let xn be a sequence in B1 (open ball of radius 1), such that |〈Txn, xn〉| → ‖T‖, and
let λ be such that 〈Txn, xn〉 → λ, by previous remarks we have that λ ∈ R, and we have
that |λ| = ‖T‖. Then we have that {Txn} is a sequence in T (B1), so by compactness of T ,

6



we have that there exists a subsequence that converges. Up to relabeling, we can assume
that {Txn} converges, to say y. Note that

‖Txn−λxn‖2 = 〈Txn−λxn, Txn−λxn〉 = ‖Txn‖2+‖λTxn‖2−2λ〈Txn, xn〉 ≤ 2λ2−2λ〈Txn, xn〉

which tends to 0. Hence, we have that Ty = λy because:

Ty = T (limTxn) = T (limλxn) = λ limT (xn) = λy

(second equality is due to the previous remark). Hence, we have that y is an eigenvalue.

Using Zorn’s lemma, choose a maximal set of orthonormal eigenvectors, call it E. Let
W be the closure of the span of E. We claim that W is equal to H . For sake of contra-
diction that W is properly contained in H . Then W⊥ is not empty. It is easy to see that
W is T -invariant, which makes W⊥ T -invariant as well. We can restric T to W⊥, and we
still have a compact, self-adjoint operator. Then applying the same argument as above,
we have that we can find an eigenvalue. A contradiction with the maximality given by
Zorn’s. Hence, W = H , just as desired.
For the last remark let ε > 0, and for sake of contradiction say that there are infinitely
many eigenvalues with multiplicity outside the ball of radius epsilon. Then for any two
eigenvectors v1 6= v2 with corresponding eigenvalues λ1, λ2 we have that

‖Tv1 − Tv2‖2 = ‖Tv1‖2 + ‖Tv2‖2 = λ21 + λ22 > 2ε2

so since their distance is bounded below an infinite sequence will never have a convergent
subsequence, that is a contradiction since T is supposed to be compact. �

1.9. Holder’s inequality.

Theorem 8. Suppose 1 < p <∞ and p, q Holder conjugates. If f and g are measurable functions
on X , then

‖fg‖1 ≤ ‖f‖p‖g‖q

Proof. We will use Young’s inequality which states that if u, v > 0 then we have that
uv ≤ up/p+ vq/q where p, q are Holder conjugates. Assuming this the rest of the problem
is very easy: First of all note that if ‖f‖p = 0 then f = 0 a.e., and so fg = 0 a.e, so we have
the equality 0 = 0, also if ‖f‖p = ∞ then it holds trivially (this is an abuse of notation,
when people write ‖f‖p then assume that f ∈ Lp and thus it is a finite quantity). Similarly
for g. Then we can define:

u =
|f |
‖f‖p

v =
|g|
‖g‖q

Applying Young’s inequality:

|fg|
‖f‖p‖g‖q

= uv ≤ up

p
+
vq

q
=
|f |p

p‖f‖pp
+
|g|q

q‖g‖qq
integrating both sides we get: ∫

|fg|
‖f‖p‖g‖q

≤ 1

as the desired result follows. �
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1.10. Minkowski inequality.

Theorem 9. Let f, g ∈ Lp. Then we have that f + g ∈ Lp and moreover,

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. First we have to show that f + g ∈ Lp. To do so, consider the following:

|f + g|p = |(2f)/2 + (2g)/2|p ≤ |2f |p/2 + |2g|p/2
where the inequality comes from the convexity of xp. Thus,

|f + g|p ≤ 2p−1(|f |p + |g|p)
integrating at both sides shows us that f + g ∈ Lp. Now,

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

integrating both sides:

‖f + g‖pp ≤
∫

(|f |+ |g|)|f + g|p−1 =

∫
|f ||f + g|p−1 +

∫
|g||f + g|p−1

≤ (‖f‖p + ‖g‖p)
(∫

(|f + g|p−1)q
)1/q

= (‖f‖p + ‖g‖p)
(∫

(|f + g|p
)(p−1)/p

= (‖f‖p + ‖g‖p)‖f + g‖p−1p

and the result follows. �

1.11. Minkowsky inequality for integrals. Let (X,Σ1, µ) and (Y,Σ2, ν) be σ-finite mea-
sure spaces. Let f : X × Y → [0,∞] be a measurable function, and let 1 ≤ p < ∞.
Then: {∫

X

(∫
Y

f(x, y)dν(y)

)p
dµ(x)

}1/p

≤
∫
Y

(∫
X

f(x, y)pdµ(x)

)1/p

dν(y)

Proof. Note that if p = 1, then the theorem is just Tonelli’s, so assume p > 1. First of all we
will consider the case when the function defined by F (x) =

∫
Y
f(x, y)dν(y) is in Lp. Using

this result, we can always break the general case into this one.

Let g ∈ Lq be any function with ‖g‖q ≤ 1. Then,∫
X

F (x)|g(x)|dµ(x) =

∫
X

∫
Y

f(x, y)dν(y)|g(x)|dµ(x) =

∫
Y

∫
X

f(x, y)|g(x)|dµ(x)dν(y)

≤
∫
Y

(∫
X

f(x, y)pdµ(x)

)1/p(∫
X

|g(x)|qdµ(x)

)1/q

dν(y) = ‖g‖q
∫
Y

(∫
X

f(x, y)pdµ(x)

)1/p

dν(y)

≤
(∫

X

f(x, y)pdµ(x)

)1/p

dν(y)

where on the second equality we used Tonelli’s and the inequality comes from Holder’s.
Taking supremum over g ∈ Lq with norm bounded by one we get:

‖F (x)‖p ≤
(∫

X

f(x, y)pdµ(x)

)1/p

dν(y)
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which is what we wanted to prove.

To prove it for the general case.Consider X1 ⊂ X2 ⊂ X3 ⊂ ... and Y1 ⊂ Y2 ⊂ Y3 ⊂ ...
such that ∪Xi = X , ∪Yi = Y and Xn and Yn of finite measure. Then define fn(x, y) =
min{n, f(x, y)} in the space Xn × Yn. Hence, we have that fn → f pointwise and mono-
tonic. Apply above to each fn and the result follows. �

1.12. Extreme points of L1[0, 1] and L∞[0,1]. Below denote by B1 the closed unit ball.
Denote Ext(C) the set of extreme points of the set C.

Theorem 10. In L∞ we have that Ext(B1) = {f : |f | = 1 a.e. }

Proof. Assume that f is in B1 and that |f | 6= 1 a.e., then there must exist a set with positive
measure such that |f | < 1. That is, E = {x : |f(x)| < 1} has positive measure. Define
En = {x : |f(x)| ≤ 1 − 1/n}, then we have E = ∪En, and since E has positive measure,
there exists a set En with positive measure. Then define:

h(x) =

{
f(x) + 1

n
, En

f(x), Ec
n

g(x) =

{
f(x)− 1

n
, En

f(x), Ec
n

note that h, g are both in B1 and moreover f = 1
2
h + 1

2
g, and h 6= f since they differ on

a set with positive measure. Hence, f is not an extreme point. Ergo, we have shown
Ext(B1) ⊂ {f : |f | = 1 a.e.}.

For the other inclusion, assume that f is such that |f | = 1 a.e., and write f as a convex
combination of two function in B1:

f(x) = λh(x) + (1− λ)g(x)

taking norms at both sides:

|f(x)| = 1 = |λh(x) + (1− λ)g(x)| ≤ λ|h(x)|+ (1− λ)|g(x)| ≤ 1

hence, the inequalities above are actually equalities. For that to hold we must have that
|h| = 1 = |g| a.e., so we see that h and g take values on the unit circle in C, this is a stricly
convex space, so if there is a set with positive measure, E, such that h 6= g for x ∈ E, then
λh(x) + (1 − λ)g(x) would be a point in the chord matching two distinct points in S1, so
it would have norm strictly less than 1, a contradiction because |f | cannot be less than 1
in a set of positive measure. Hence, g = h a.e., and it follows that f = g = h a.e., and we
conclude that f is an extreme point. The desired result has been proven. �

Theorem 11. B1 has no extreme points in L1[0, 1].

Proof. We first show that if B1 does have extreme points, then they ought to be of norm
1: Let f ∈ B1 (0 6= f ) and say that ‖f‖ < 1 (I am using ‖.‖ instead of ‖.‖1 because this
part of the proof does not require the fact that we are in L1), then let ε > 0 be such that
‖f‖+ ε ≤ 1 and ‖f‖ > ε. Then we have:

f =
1

2

(
‖f‖+ ε

‖f‖
· f
)

+
1

2

(
‖f‖ − ε
‖f‖

· f
)
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the conditions on ε guarantee that ‖f‖+ε‖f‖ · f and ‖f‖−ε
‖f‖ · f will be in B1. Hence, f is not an

extreme point.

Now we will need the fact that we are in L1. Assume that f is in B1 and for sake of
contradiction that it is an extreme point. Then by the above argument, we have that
‖f‖1 = 1, that is:

1 =

∫ 1

0

|f |

Define

F (t) =

∫ t

0

|f |

then we have that F is a continous function, so we have that there exists a t ∈ (0, 1) such
F (t) = 1/2. Then,

h(x) =

{
2f(x), [0, t]

0 (t, 1]
g(x) =

{
0, [0, t]

2f(x), (t, 1]

we have that ‖h‖1 = ‖g‖1 = 1, f 6= h and f = (1/2)h + (1/2)g, a contradiction. Hence, B1

has no extreme points. �

1.13. ‖T‖ = ‖T ∗‖.

Theorem 12. Let X be a Banach space, and let T be a bounded linear operator, then ‖T‖ = ‖T ∗‖

Proof. The result is really easy if we assume that for an element x we have:

‖x‖ = sup{|f(x)| : f ∈ B∗1}
where B1 is the closed unit ball in X and B∗1 is the closed unit ball in X∗. Assuming this
we have:

‖T‖ = sup{‖T (x)‖ : x ∈ B1}
= sup{|f(T (x))| : x ∈ B1, f ∈ B∗1}
= sup{|T ∗(f)(x)| : x ∈ B1, f ∈ B∗1}
= sup{‖T ∗(f)‖ : f ∈ B∗1}
= ‖T ∗‖

for sake of completeness we will include a proof of the fact we just used:

‖x‖ = sup{|f(x)| : f ∈ B∗1}
note that for any f ∈ B∗1 we have that

|f(x)| ≤ ‖f‖‖x‖ ≤ ‖x‖
so we trivially have

‖x‖ ≥ sup{|f(x)| : f ∈ B∗1}
for the other inclusion. Let x be given. Define f(x) = ‖x‖, and extend it to a linear
functional using Hanh Banach, to a function such that |f(y)| ≤ ‖y‖, (meaning f ∈ B∗1), so
we have that there is a function such that |f(x)| = ‖x‖, proving the other direction of the
inequality and the result follows. �
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2. THEOREMS TO KNOW HOW TO USE

Theorem 13. Rouche’s theorem: If the complex-valued functions f and g are holomorphic inside
and on some closed contour K, with |g(z)| < |f(z)| on K, then f and f + g have the same number
of zeros inside K, where each zero is counted as many times as its multiplicity

Theorem 14. Krein-Milman theorem: Let K be a nonempty set, compact, convex, of a locally
convex topological vector space X . Then K is the closed convex hull of its extreme points.

Theorem 15. Krein-Milman: Let K be a nonempty compact, convex subset of a locally convex
topological vector space X . Then K has an extreme point.

Theorem 16. Alaoglu’s theorem: X be a normed linear space. Then B∗ (closed unit ball in X∗)
is compact with respect to the weak-∗ topology

Theorem 17. Stone-Weirstrass: X locally compact Hausdorff space and A is a subalgebra of
C0(X,R). A is dense if and only if it separates points.

Theorem 18. Montel’s theorem: F = {fn} be a family of holomorphic functions on Ω s.t. is
uniformly bounded on compact subsets of Ω. Then, F is a normal family (i.e., there exists a
subsequence in {fn} that converges uniformly on every compact set of Ω).

Theorem 19. Duality of Lp: Let 1 < p <∞ and let q be its Holder conjugate. Let (X,Ω, µ) be
a measure space. For g ∈ Lq, define Fg : Lp → F as follows:

Fg(f) =

∫
fgdµ

Then Fg ∈ (Lp)∗ and the map g 7→ Fg defines an isometric isomorphism of Lq onto Lp

If X is σ-finite and g ∈ L∞ and we define Fg : L1 → F by:

Fg(f) =

∫
fgdµ

then Fg ∈ (L1)∗ and the map g 7→ Fg defines an isometric isomorphism of L∞ onto L1.

Theorem 20. Riesz Representation Theorem: If X is a locally compact space and µ ∈ M(X),
define Fµ : C0(X)→ F by

Fµ(f) =

∫
fdµ

Then Fµ ∈ C0(X)∗ and the map µ→ Fµ is an isomorphism of M(X) onto C0(X)∗.

Theorem 21. Hanh-Banach Theorem: Let X be a vector space over R and let q be a sublinear
fucntional on X . If M is a linear manifold in X and f : M → R is a linear functional such that
f(x) ≤ q(x) for all x ∈ M , then there is a linear fnctional F : X → R such that F | M = f and
F (x) ≤ q(x) for all x ∈ X .

Theorem 22. Inverse Mapping Theorem: If X and Y are Banach spaces and A : X → Y is a
bounded linear transformation that is bijective, then A−1 is bounded.

Remark 23. This follows trivially from the Open Mapping theorem since if the function is bijec-
tive then we can define A−1 and to see that it is bounded, we just note that it is continuous since
A(U) is open if and only if U is open.
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Theorem 24. The Clsoed Graph Theorem: If X and Y are Banach spaces and A : X → Y is a
linear transformation such that the graph of A,

graA ∼= {x⊕ Ax ∈ X ⊕1 Y : x ∈ X}
is closed, then A is continuous.

3. PROBLEMS HE HAS ASKED BEFORE

1 Using calculus of residues, prove that
∞∑
n=1

1

n4
=
π4

90

Hint: The laurent series for cot z = 1
z
− 1

3
z − 1

45
z3....

Proof. Let SN be the square with vertices at (±(N + 1/2),±(N + 1/2)) (with N a
positive integer). Consider the function f(z) = cotπz

z4
. It is clear that we have simple

poles at the non-zero integers and that at 0 we have a pole of order 5. Applying
the residue theorem we obtain:∫

SN

f(z)dz = 2πi

(
N∑
i=1

res(f, i) + res(f,−i)

)
+ 2πi · res(f, 0)

Now we compute the residues. res(f, 0) = −π3

45
we can read from the Laurent

expansion. To find the simple poles, let k 6= 0 be an integer:

lim
z→k

(z − k) · cotπz

z4
=

1

k4
· lim
z→k

cot πz(z − k)

=
1

k4
lim
z→k

1

π sec2(πz)
=

1

πk4

If we manage to show that the integral on the left hand side goes to 0, then we
would have:

0 = 2πi

(
∞∑
i=1

2

πk4

)
+ 2πi

(
−π

3

45

)
which clearly gives the desired result. Hence, all we have to do is show:∫

SN

f(z)dz → 0 as N →∞

First we are going to show that in our contour SN we have that

| cot(πz)| ≤ 2

for the vertical line on the right side we have that z = (N + 1/2) + iy:

| cos(πz)| = | exp(iπ((N + 1/2) + iy))− exp(−iπ((N + 1/2) + iy))|
2

�

2 Let Ar1,r2 = {z ∈ C : r1 < |z| < r2}. Show that there is a biholomorphic mapping
ϕ : Ar1,R1 → Ar2,R2 if and only if R1/r1 = R2/r2. You may assume that ϕ extends to
a homeomorphism of the closed annulus and that log |ϕ(z)| is harmonic.

12



Proof. One direction is completely trivial. For the other direction we will assume
that r1 = r2 = 1 (by scaling), so say there is a biholomorphic map from A1 to A2.
We will show that R1 = R2.

We first prove the following lemma. With the conditions above we have:
1 If lim|z|→1 |ϕ(z)| = 1, then lim|z|→R1 |ϕ(z)| = R2

2 If lim|z|→1 |ϕ(z)| = R2, then lim|z|→R1 |ϕ(z)| = 1
We shall prove this fact later. Assuming this, we can always assume that (1) hap-
pens because if (2) holds we can substitute ϕ for R2/ϕ, and this is still a biholo-
morphic map from A1 to A2 such that the first condition is the one that holds.

Define a function h(z) = log |z| − logR1

logR2
log |ϕ(z)|. Extend h to the closure of A1.

Since (1) is the condition that holds we have that h(z)→ 0 as |z| → 0 and |z| → R1.
Then, since we can assume that this function is harmonic, by Maximum modulus
principle we have that h must be the zero function. It follows that:

log |z| = logR1

logR2

log |ϕ(z)|

Hence,
|z|β = |ϕ(z)|

where β = logR2/ logR1. Let P ∈ A1, and let Dr(P ) be a disk centered at P
and with r such that Dr(P ) is contained in A1. Then since we have a function
that does not vanish and since the disk is simply connected we can define zβ by
elog(z)β by picking a branch of the logarithm. Hence, we have that g(z) = ϕ(z)/zβ

is a holomorphic function on the open disk Dr(P ), but note that |g(z)| = 1, so in
particular the image of g is not open. By open mapping theorem, we must have
that g is a constant map. That is, ϕ(z) = eiθzβ . We can do this for each point of A1,
and since the function is continuous we have that ϕ(z) = eiθzβ in the entire anuli
A1. This however is only possible when β is an integer, and since ϕ is injective, we
have that β = 1. Hence, R1 = R2. �

3 Let T be the Fourier transform on L(R) given by

Tf(ζ) =

∫
e−2πixζf(x)dx ∀f ∈ L1(R) ∩ L2(R)

What is the spectrum of T ? Justify your answer.

Proof. First of all note that since T (T (f)) = f(−x), we have that T 4 = I . Then
using the identity:

σ(p(T )) = p(σ(T ))

for p(x) = x4, we have that 1 = (σ(T ))4, so every element of σ(T ) is a fourth root
of unity. To show that this are actually all the points in the spectrum, we will show
that they are eigenvalues. {±1,±i}: �

4 Let µ be a finite, complex Borel measure on the real line, and suppose that for all t
real, ∫ ∞

−∞
eitxdµ(x) = 0

13



Prove that µ is the zero measure.

Proof. �

5 Let 1 < p < ∞, and let X be a closed convex subset of Lp([0, 1], dx). Show that
there is a point in X which is at the smallest distance from the origin.

Proof. First we will use the fact that Lp is uniformly convex: If for every ε > 0 there
exists a δ > 0 such that for any two vectors x, y with ‖x‖ = ‖y‖ = 1 the condition
‖x− y‖ ≥ ε implies that ‖x+y

2
‖ ≤ 1− δ.

Let c = inf{‖x‖ : x ∈ X}. If c = 0, then we are done, since it would imply
that 0 ∈ X as X is closed. Hence, say c > 0, and by scaling we can assume that
c = 1.

Let {xn} be a sequence such that { xn
‖xn‖} goes to 1. We will show that this latter

sequence is Cauchy. We have:

1

2

∥∥∥∥ xn
‖xn‖

+
xm
‖xm‖

∥∥∥∥ ≥ 1

2
‖xn + xm‖ −

1

2

∥∥∥∥ xn
‖xn‖

− xn
∥∥∥∥− 1

2

∥∥∥∥ xm
‖xm‖

− xm
∥∥∥∥

Note that since {‖xn‖} → 1 from above, we have that { xn
‖xn‖} → xn, so we can

choose N large enough so that n ≥ N implies∥∥∥∥ xn
‖xn‖

− xn
∥∥∥∥ < δ

also note that since X is a convex set we have that 1
2
(xn + xm) ∈ X , so we have

1
2
‖xn + xm‖ ≥ 1, thus:

1

2

∥∥∥∥ xn
‖xn‖

+
xm
‖xm‖

∥∥∥∥ ≥ 1− δ

since we are in a uniformly convex space, we must have that∥∥∥∥ xn
‖xn‖

− xm
‖xm‖

∥∥∥∥ < ε

for n,m ≥ N . Thus, the sequence is Cauchy. This implies that {xn} is Cauchy
because:

‖xn − xm‖ ≤
∥∥∥∥xn − xn

‖xn‖

∥∥∥∥+

∥∥∥∥xm − xm
‖xm‖

∥∥∥∥
and we can make the terms on the right arbitrary small. Thus, we have that {xn}
converges to a point x, and since X is closed we have that x ∈ X . More over note
that since norm is a continous function, we have that 1 = lim ‖xn‖ = ‖ limxn‖ =
‖x‖, so we have a point that achieves the minimum distance to the origin.

To show uniqueness of the point we will use the uniform convexity again. Say
that there are two points x and x′ in our set X such that they are of norm 1. Then
we can find an ε > 0 such that ‖x− x′‖ > ε, but by above, we have that there exists
a δ > 0 such that ‖x+x′

2
‖ ≤ 1 − δ, so in particular we have that x + x′ is in X , so

14



we found a point on our set with norm less than 1, contradicting the fact that the
infimum norm was 1. �

6 Prove or disprove the following statement: If {fn} is a sequence of continous func-
tions on [0, 1] which converges pointwise to a function f , then there exists a point
x0 ∈ [0, 1] such that f is continous at x0.

Proof. For a given integer N and ε > 0 we define the set:

AN(ε) = {x : |fn(x)− fm(x)| ≤ ε ∀n,m ≥ N}

Note that AN(ε) is a closed set. For any fixed ε, we have the inclusions A1(ε) ⊂
A2(ε) ⊂ .... The union of this sets is all of X since we have that fn(x) converges for
any fixed x, so the sequence {fn(x)} is Cauchy and R is complete. Now define:

U(ε) =
⋃

N∈Z+

int(AN(ε))

We will first prove that U(ε) is open and dense in X and using the Baire category
theorem we would have that the set C =

⋂
n∈Z+

U(1/n) is dense and then we shall
prove that f is continous in C.

U(ε) is open and dense: Let V be an arbitrary open set and we want to show
that there is an N so that V ∩ int(AN(ε)) is not empty. First of all note that the set
V ∩ int(AN(ε)) is closed in V , and since V ⊂ X , we have that V is also a Baire
space, meaning that there is an m so that V ∩ int(Am(ε)) not nowhere dense, i.e., it
must contain a nonempty set W of V . Because V is open in X , the set W is open in
X ; therefore, it is contained in intAm(ε).

f is continuous at C: Given ε > 0, we shall find a neighborhood W of x0 such
that |f(x) − f(x0)| < ε for all x ∈ W . First choose k so that 1/k < ε

3
. Since x0 ∈ C,

we have that x ∈ U(1/k) for a big enough k; therefore there is an N such that
x0 ∈ int(AN(1/k)). Finally, continuity of the function fN enables us to choose a
neighborhood W of x0, contained in AN(1/k), such that

|fN(x)− fN(x0)| < ε/3 x ∈ W

The fact that W ⊂ AN(1/k) implies that

|fn(x)− fN(x)| ≤ 1/k n ≥ N, x ∈ W

letting n→∞we get:

|f(x)− fN(x)| ≤ 1/k x ∈ W

as x0 ∈ W we trivially have

|f(x0)− fN(x0)| < 1/k

thus we have,
|f(x)− f(x0)| < ε x ∈ W

just as desired. �
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7 a Suppose {Fn} is a sequence of functions on L∞([0, 1], dx) with norm bounded
by 1, ‖F‖∞ ≤ 1. Prove or disprove the following statement:

There is a subsequence {Fnk
} such that for all G ∈ L1([0, 1], dx),

lim
k→∞

∫ 1

0

Fnk
(x)G(x)dx

exists.
b Suppose {Fn} is a sequence of functions on L1([0, 1], dx) with norm bounded

by 1, ‖F‖1 ≤ 1. Prove or disprove the following statement:

There is a subsequence {Fnk
} such that for all G ∈ L∞([0, 1], dx),

lim
k→∞

∫ 1

0

Fnk
(x)G(x)dx

exists.

Proof. a For this part we are going to use the fact that L∞ ∼= (L1)∗. For each
Fn ∈ L∞ there corresponds a linear functional in L1, call it ϕn and moreover
the functional is given by the following:

ϕn(G) =

∫
FnG

for all G ∈ L1. Then, by Alaoglu’s theorem, we have that the closed ball of
radius 1 is closed in (L1)∗ is compact with respect to the weak-∗ topology,
in particular, since ‖ϕn‖ = ‖Fn‖ ≤ 1, we have that {ϕn} is in such ball, so
there exists a convergent subsequence. {ϕnk

}, but by definition of the weak-∗
topology, convergence of ϕnk

means convergence with respect to evaluation.
That is, for all G ∈ L1, limk→∞ ϕnk

(G) converges, which is precisely what we
wanted to prove.

b For a counterexample do the following construction:
�

8 Let C ⊂ [0, 1/2] be a closed subset of Lebesgue measure zero. Suppose that f(z) is
a bounded holomorphic function on D\C where D = {z ∈ C : |z| < 1}. Prove that
f can be extended to a holomorphic function on D

Proof. Define g(z) as follows:

g(w) =
1

2πi

∫
γr

f(z)

z − w
dz

where γr is the circle of radius r and |w| < r (with 1/2 < r < 1). First of all note that
g(w) is well defined, that is if r < r′, then the definition of g(w) is unambiguous as
f(z)
z−w is holomorphic in the anulus {z : r < |z| < r′}, so we can homotope γr to γr′
without changing the value of the integral. Hence, for any w ∈ D we can define
g(w). We want to show two things: That g agrees with f in D\C and secondly that
g is holomorphic.
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For the first part: Let w ∈ D\C. Then since C is closed there exists an open ball B
with w ∈ B and B ⊂ D\C. �

9 Find with proof the number of zeros of the function 9z6 + e2z on the closed unit
disc in the complex plane.

Proof. Let f = 9z6 and let g = e2z, then for |z| = 1, we have that |f(z)| = 9 and
|g(z)| = |e2z| = |e2Re(z)| ≤ e2 < 9, then we have that f (which clearly has 6 zeroes,
has the same number of zeroes as 9z6 + e2z by Rouche’s theorem. �

10 Let X be a Banach space, and let A and B be closed linear subspaces.
a Assume that

inf{‖x− y‖ : x ∈ A, y ∈ B, ‖x‖ = ‖y‖ = 1} = δ > 0

Show that A+B is closed in V .
b Assume that A + B = V and A ∩ B = {0}. Show that the condition in part a

must be true.

Proof. The idea of the proof will be the bound

c(‖a‖+ ‖b‖) ≤ ‖a+ b‖

because if we do so, then we would have the following: Let {cn} be Cauchy in
C = A + B, so rewrite it as {cn} = {an + bn} with an ∈ A and bn ∈ B. Then we
would have that for large n,m:

ε > ‖an + bn − (am + bm)‖

= ‖an − am + bn − bm‖ ≥ c1(‖an − am‖+ ‖bn − bm‖) ≥ c1‖an − am‖

hence {an} is Cauchy and so is {bn}. As A and B are closed, we have that an → a
and bn → b with a ∈ A and b ∈ B, so we have that an + bn → a + b ∈ A + B. That
is, A+B is closed.

To show that c(‖a‖ + ‖b‖) ≤ ‖a + b‖ we will proceed as follows: First we assume
that ‖a‖+ ‖b‖ = 1 and we show that:

(1) inf{‖a+ b‖ : ‖a‖+ ‖b‖ = 1} ≥ c :=
min{δ, 1}

4

First of all note that if | ‖a‖ − ‖b‖| ≥ c, then we have that ‖a + b‖ ≥ ‖a‖ − ‖b‖ and
‖a + b‖ ≥ ‖b‖ − ‖a‖, so we have that ‖a + b‖ ≥ |‖a‖ − ‖b‖| ≥ c. Thus, assume that
|‖a‖−‖b‖| < c. Note that this implies that a 6= 0 because otherwise we would have
that 0 + ‖b‖ = ‖a‖ + ‖b‖ = 1 and ‖b‖ < c so we would have 1 < c a contradiction
with the definition of c (this is why in the definition of c we use the min{1, δ}, that
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way we ensure that both a and b are non-zero. Hence,

‖a+ b‖ =

∥∥∥∥a− a

2‖a‖
+

a

2‖a‖
+ b− b

2‖b‖
+

b

2‖b‖

∥∥∥∥
≥
∥∥∥∥a− a

2‖a‖

∥∥∥∥+

∥∥∥∥ a

2‖a‖
− b

2‖b‖

∥∥∥∥+

∥∥∥∥b− b

2‖b‖

∥∥∥∥
= −

∣∣‖a‖ − 1

2

∣∣+ ‖ a

2‖a‖
− b

2‖b‖
‖ −

∣∣‖b‖ − 1

2
‖

≥ δ

2
−
∣∣‖a‖ − 1

2

∣∣− ∣∣‖b‖ − 1

2
‖

=
δ

2
− |‖a‖ − ‖b‖| > δ

2
− c > δ

2
− δ

4
=
δ

4
> c

so we see that (1) is proven. To see how this implies that c(‖a‖+ ‖b‖) ≤ ‖a+ b‖ for
general a and b, just note:∥∥∥∥ a

‖a‖+ ‖b‖
+

b

‖a‖+ ‖b‖

∥∥∥∥ ≥ c

multiplying both sides by (‖a‖+ ‖b‖) gives the desired result.

For the second part first let Q be the quotient map by A. That is Q : X → X/A.
Then sinceA is closed we have thatX/A is a Banach space, and moreover, we have
that the restriction ofQ toB, call it T will be surjective (asA+B = X) and injective
(as A ∩ B = {0}). Then by the Banach open theorem, we have that T is an open
map. This is equivalent of saying that T−1 is continuous. Now assume for sake of
contradiction that

inf{‖a− b‖ : a ∈ A, b ∈ B, ‖x‖ = ‖y‖ = 1} = 0

then we can find a sequence {an − bn} such that ‖an‖ = 1 = ‖bn‖ with an ∈ A
and bn ∈ B and an − bn → 0. Then note the following: an − bn → 0 implies that
Q(an − bn)→ 0. Hence, an − bn → 0. Thus we have:

0 = T−1(0) = T−1(lim an − bn) = lim(T−1(an − bn)) = lim(T−1(bn)) = lim(bn)

a contradiction since ‖bn‖ = 1, so their limit cannot be 0. �

11 Let `2 be the Hilbert space of sequences α = {an}, n ≤ 1, such that
∑
|an|2 con-

verges, with the hermitian product

〈α, β〉 =
∑

anbn

Let T be the shift operator, that is

T (α) = (0, a1, a2, ..)

Compute the spectrum of T .
12 For functions φ ∈ C∞0 (R) define the principal value integral against 1/x by

lim
ε→0

∫
ε<|x|<1/ε

φ(x)
1

x
dx = 〈φ(x),

1

x
〉
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Show that 〈φ(x), 1
x
〉 extends to a tempered distribution and compute the Fourier

transform of this extension.

Proof. We need to show that for f in the Schwarz space we have that

lim
ε→0

∫
ε<|x|<1/ε

f(x)
1

x
dx

exists. Write the integral as follows:∫
ε<|x|<1

f(x)− f(0)

x− 0
dx+

∫
ε<|x|<1

f(0)

x− 0
dx+

∫
1≤|x|<1/ε

f(x)

x
dx

First of all note that the middle term is zero since the function 1/x is odd. Sec-
ondly, the third term converges as f is rapidly decreasing (in particular, we have
that f(x)/x ≤ 1/x2 for large values of x, so we have convergence for the integral
comparison test). Lastly, by the intermediate value theorem for derivatives, there
is a point cx ∈ (0, x) such that f(x)−f(0)

x−0 = f ′(cx), but note that f ′ is going to be
continuous, and in the interval [0, 1] we have that |f ′| ≤ M , so we have that the
first integral is finite as well.

To find the Fourier transform: �

13 Using calculus of resides, prove that
∞∑
n=1

(−1)n

n4
= −7π4

720

Hint: Consider the function f(z) = 1
sinπz

11 Let H be the space of all analysis functions F on the open unit disk with norm

‖F‖H =

(∫ ∫
|F (z)|2dxdy

)1/2

<∞

a Prove that H is complete in this norm.
b Exhibit with proof a complete orthonormal basis for H

Proof. a Let {fn} be a Cauchy sequence inH . First of all note that fn ∈ L2, which
is a Banach space. Hence, we have that fn → f in the L2 norm to a function f .
We shall show that f is indeed holomorphic.If we manage to show that {fn}
is bounded in compact subsets of D, then we will be able to apply Montel’s
theorem, which will yield a subsequence of functions that converge uniformly
in every compact subset of D. Since uniform limit of holomorphic functions is
holomorphic, we would have that f is indeed holomorphic (the subsequence
must have to converge to f ).

Hence, we show that {fn} is bounded in compact subsets of D: Let K be a
compact set of D, and let Dr be a closed disk containing K. We shall show
that f is bounded in Dr instead. First note that since D has finite measure we
have that ‖f‖1 ≤ A‖f‖2 for some constant A and all f ∈ L2. Also, since {fn}
converge in the L2 norm, we have that there exists an M such that ‖fn‖2 ≤M
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for all n. Hence, ‖fn‖1 ≤ AM for all n. We claim that supz∈Dr
|f(z)| ≤ B‖f‖1

for some B (putting all this together would give the desired bound).

‖f‖1 =

∫
D

|f(z)|dz =

∫ 2π

0

∫ 1

0

|f(reiθ)|rdrdθ

let r′ be such that r < r′ < 1. Then we have that:

f(z) =
1

2πi

∫
Cr′

f(w)

w − z
dw ⇒ |f(z)| ≤ 1

2π

∫
Cr′

|f(w)|
|w − z|

dw

as w ∈ Cr′ , so we have that |w − z| > δ for some δ > 0. Thus,

|f(z)| ≤ 1

2πδ

∫
Cr′

|f(z)|dz =
1

2πδ

∫ 2π

0

|f(r′eiθ)|r′dθ

this holds for any radius greater than r′, so integrate both sides when the
radius goes from r′ to 1:

(1− r′)|f(z)| ≤ 1

2πδ

∫ 1

r′
|f(reiθ)|rdθdr

Thus,

|f(z)| ≤ 1

2πδ(1− r′)

∫ 1

r′
|f(reiθ)|rdθdr ≤ 1

2πδ(1− r′)

∫ 1

0

|f(reiθ)|rdθdr =
‖f‖1

2πδ(1− r′)
Hence, for f holomorphic we have that supz∈K |f(z)| ≤ B‖f‖1 for a constant
B. Hence we have the desired bound, and we are done by earlier remarks.

b
�

14 Find with proof the number of zeroes of the function 8z4 + e2z on the closed unit
disc in the complex plane.

Proof. Let f = 8z4 and g = e2z, then we have that |g(z)| < |f(z)| for all z in the
unit circle, so f + g has the same number of zeroes than f , which clearly has 4 (By
Rouche’s theorem). �

15 Let f be differentiable at every point in [0, 1]. Prove that there exists x0 ∈ [0, 1] such
that f ′(x) is continuous at x0.

Proof. Define fn(x) = f(x)−f(x+1/n)
1/n

, then we have that fn(x) → f ′n(x) pointwise.
Note that each fn is continuous, so by problem 6, we have that there exists a point
x0, such that f ′(x0) is continuous. �

4. TOPICS ON FUNCTIONAL ANALYSIS

4.1. Spectrum of an operator. The spectrum of an operator is the generalization of eigen-
values that we learned in linear algebra. Recall, in linear algebra, we said that λ was an
eigenvalue for T if the operator T − λI was not injective. In reality, we are concerned
with the set of λ such that T − λI is not invertible. Since in finite dimensions we have
dimV = dim ker(T ) + dim ran(T ), we have that T −λI was not surjective either. Note that
this is not the case in infinite dimensions. We can have a λ such that T−λI is injective, but
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fails to be surjective (consider the shift operator to the right). Hence, we have to develop
some notions of different kinds of spectrum.

Definition 25. Let T be a bounded operator on a Banach space X . The spectrum of T , σ(T ),
consists of all the scalars λ such that λI − T does not have an inverse that is a bounded operator.
In this case, this is equivalent to the set of λ such that λI − T is not bijective.

It is convenient to note that the spectrum of an operator can be decomposed into the
following three sets:

1 σp(T ): Point spectrum: The set of λ such that λI−T is not injective. Meaning, this
is the set of eigenvalues.

2 σr(T ): Residual spectrum: The set of λ such that λI − T is injective, but does not
have a dense range.

3 σc(T ): Continuous spectrum The set of λ such that λI − T is injective and has a
dense range, but the range fails to be closed (meaning that it is not surjective)

Note that by definition we then have the following:

σ(T ) = σp(T ) ∪ σr(T ) ∪ σc(T )

where the unions above are disjoint.

Lemma 26. σ(T ) is always a closed, bounded, non-empty set of the complex numbers.

5. TOPICS ON COMPLEX ANALYSIS

Theorem 27. The open mapping theorem: If f : U → C is a nonconstant holomorphic function
on a connected open set U , then f(U) is an open in C

Theorem 28. Maximum modulus principle: Let U ⊂ C be a domain. Let f be a holomorphic
function on U . If there is a point P ∈ U such that |f(P )| ≥ |f(z)| for all z ∈ U , then f is
constant.

Proof. Assume that there is such a P . If f is not constant, by above we have that f is
an open map. In particular there should be a neighborhood around f(P ) such that it is
contained in f(U), but this implies that there is a η ∈ f(U) with |η| > |f(P )| a contradic-
tion. �

Theorem 29. Maximum modulus principle: Let U ⊂ C be a bounded domain. Let f be a
continuous function on U that is holomorphic on U . Then the maximum value of |f | on U must
occur in δU .

Proof. As |f | is continuous on the compact set U then it achieves its maximum. If |f | is
constant there is nothing to prove, so assume |f | is not constant, then the maximum value
of |f | cannot happen in U , by our last theorem, so it must happen in δU . �

The above has two important consequence:

(1) If U ⊂ C is a domain, f holomorphic in U , if there exists a P such that |f | has a
local maximum at P , then f is constant.

(2) If U ⊂ C is a domain, with f(z) 6= 0 for all z ∈ U . If there exists a P ∈ U such that
|f(P )| ≤ |f(z)| for all z ∈ U , then f is constant.
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