Algebra Qualifying exams

Daniel Montealegre

November 7, 2013

Spring 13. 1(a) Let $n \geq 1$. Give an example of a field extension L / K with $\operatorname{Gal}(L / K)=\mathbb{Z}_{n}$
Proof. We claim that $L=\mathbb{F}_{p^{n}}$ and $K=\mathbb{F}_{p}$ will work. First we show that the extension L / K is of degree n. First of all note that any element in L is a solution of $x^{p^{n}}-x$ (by Lagrange's theorem) and moreover, note that we have a complete set of solutions. Hence, L is a splitting field of a polynomial over K of degree n, so $[L: K]=n$. Hence, we have that $|G a l(L / K)|=n$. Now we will show that it is cyclic. Define φ to be the map $a \mapsto a^{p}$. Over a field of characteristic p, we have that this function is a homomorphism $(a+b)^{p}=a^{p}+b^{p}$ (as all the middle terms will vanish in the binomial expansion), and since field homomorphisms are injective, we have an injection of a finite set into itself, so it has to be an automorphism, i.e., $\varphi \in G(L / K)$. It suffices to show that φ has order n. Assume for sake of contradiction that there is a $m<n$ such that $\varphi^{m}=i d$. Then let α be a primitive root of L, we have $\varphi^{m}(\alpha)=\alpha^{p^{m}}=i d(\alpha)=\alpha$, but this is a contradiction with the fact that α is a primitive element of L, hence, $m \geq n$, and we get our desired result.

Spring 13.1(b) Give an example of a field extension L / K with galois group A_{n}.
Proof.
Spring 13.2 Let $A=\mathbb{C}[x, y]$ be the polynomial ring in two variables. Consider three ideals in A : $(x),\left(x, y^{2}\right),(x y)$. Which of these are prime? Why?

Proof. (x) is prime since $A /(x)=\mathbb{C}[y]$ which is a domain. $\left(x, y^{2}\right)$ is not since $A /\left(x, y^{2}\right)=$ $\mathbb{C}[y] /\left(y^{2}\right)$ but here $y \cdot y=0$, so we don't have a domain. Lastly, $(x y)$ is not a domain since $x \cdot y \in(x y)$, but $x \notin(x y)$ (if we have $x \in(x y)$ then we would have an element $a \in A$ such that $a(x y)=x$, but note that y is an irreducible appearing in the right hand side, but not in the left hand side, as A is a UFD we get a contradiction), similarly $y \notin(x y)$, and we get the result.

Spring 13. 3 Let A be the quotient of $\mathbb{C}[a, b, c, d]$ by the ideal generated by ($a d-b c$). Is A a UFD? Why?

Proof. No. We have $a b=c d$ are distinct factorizations into irreducibles of the same element. The reason why a is irreducible in the quotient ring is...

Spring 13. 4 Give an example of a commutative ring A and two non-zero A-modules M and N such that

$$
M \otimes_{A} N=0
$$

Explain why this is indeed so.
Proof. Let $A=\mathbb{Z}$ and $M=\mathbb{Z}_{2}$ and $N=\mathbb{Z}_{3}$. Then we have $a \otimes b=3 a \otimes b=a \otimes 3 b=$ $a \otimes 0=0$.

Spring 13.5 Give an example of a ring A and a left A-module which is projective but not free. Prove your statements.

Proof. Consider the \mathbb{Z}_{2} as a \mathbb{Z}_{6}-module. We have that \mathbb{Z}_{2} is a projective \mathbb{Z}_{6} module because $\mathbb{Z}_{6}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, so indeed \mathbb{Z}_{2} is the summand of a free \mathbb{Z}_{6} module. Note however that it cannot be free since any non-zero free module over \mathbb{Z}_{6} must have at least 6 elements, but \mathbb{Z}_{2} only has two.

Winter 11. 1 Which of the following isomorphisms of abelian groups are possible? Justify your answer.
Proof. $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \cong \mathbb{Z} / 4$: not possible. Just note that all the elements on the left hand side have order at most 2 , and 1 on the right hand side has order 4 .
$\mathbb{Z} / 2 \oplus \mathbb{Z} / 3 \cong \mathbb{Z} / 6$: Just note that $(1,1)$ is a generator for the LHS and it is of order 6.
$\mathbb{Z} / 2 \oplus \mathbb{Z} / 4 \cong \mathbb{Z} / 8$: Not possible. Just note that the left hand side has orders bounded by 4 whereas the right hand side has an element of order 8.

Winter 11. 2 Let k be a field, V a finite dimesional vecotr space over k and $A: V \longrightarrow V$ a linear operator. Which of the above statements are true theorems and which are not? Justify your answers:

Proof. $\operatorname{dim} \operatorname{ker}(A)=\operatorname{dim} \operatorname{Im}(A)$: No. Consider the 0 map.
$\operatorname{dim} \operatorname{ker}(A)=\operatorname{codim} \operatorname{Im}(A)$: By the rank nullity theorem we have $\operatorname{dim}(V)=\operatorname{dim} \operatorname{Im}(A)+$ $\operatorname{dim} \operatorname{ker}(A)$, and substracting $\operatorname{dim} \operatorname{Im}(A)$ both sides gives the result.
$\operatorname{codim} \operatorname{ker}(A)=\operatorname{dim} \operatorname{Im}(A)$. Again, this is immediate by the Rank and Nullity Theorem.

For sake of completeness I include a statement and proof of the theorem:
Theorem 1. Rank and Nullity Using the assumptions of the problem, we always have: $\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(A)+\operatorname{dim} \operatorname{Im}(A)$.

Proof. Let V be n-dimensional. Let $\operatorname{ker}(A)$ be t-dimensional and have basis v_{1}, \ldots, v_{t}. Now let $\operatorname{Im}(A)$ be s-dimensional with basis $a_{1}, . ., a_{s}$. Since they are in the image of A, there exists b_{i} such that $b_{i} \mapsto a_{i}$. I claim $B=\left\{v_{1}, \ldots, v_{t}, b_{1}, \ldots, b_{s}\right\}$ is a basis for V, and hence the result would follow. First of all it is a spanning set: Let $v \in V$. Then consider
$A(v) \in \operatorname{Im}(A)$, so we have that $A(v)=c_{1} a_{1}+\ldots+c_{s} a_{s}$. Then the element $v-c_{1} b_{1}+\ldots+c_{n} b_{n}$ is in the kernel of A, so we have that $v-c_{1} b_{1} \ldots-c_{s} b_{s}=d_{1} v_{1}+\ldots+d_{t} v_{t}$, so indeed v is in the span of B. To see that B is linearly independent, consider $c_{1} v_{1}+\ldots+c_{t} v_{t}+d_{1} b_{1}+. .+d_{s} b_{s}=0$. Apply A, and obtain: $d_{1} a_{1}+. .+d_{s} a_{s}=0$, but by choice, $\left\{a_{i}\right\}$ where a basis for the image, so $d_{i}=0$. Hence, $c_{1} v_{1}+\ldots+c_{t} v_{t}=0$ and by choice $\left\{v_{i}\right\}$ is a basis for $\operatorname{ker}(A)$ so $c_{i}=0$, and we get the linear independence, and we get that $t+s=n$, just as we wanted to prove.

Winter 11. 3 Let k be a field. Give an example of a projective left module over the matrix algebra $\operatorname{Mat}_{n}(k)$ which is not free. Explain why it is projective and why not free.

Proof.
Winter 11. 4 Let \mathbb{F}_{q} be a finite field with q elements. Prove that there exists a non-constant polynomial with no roots in \mathbb{F}_{q}

Proof. Consider $f(x)=x^{q}-x+1$. Any element $\alpha \in \mathbb{F}_{q}$ satisfies $\alpha^{q-1}=1$ by Lagrange's theorem. Then $\alpha^{q}=\alpha$, so $f(\alpha)=1$ for all $\alpha \in \mathbb{F}_{q}$ and we see that f has no roots in \mathbb{F}_{q}.

Winter 11. 5 Let p be a prime number. Prove that the group formed by matrices of the form $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$, $a \in \mathbb{F}_{p}$, is a Sylow p-subgroup of the finite group $G L_{2}\left(\mathbb{F}_{p}\right)$.

Proof. First we determine the order of the group $G=G L_{2}\left(\mathbb{F}_{p}\right)$. There are $p^{2}-1$ ways of choosing the first row vector to be non-zero. Next there are $p^{2}-p$ ways of choosing the next row to be linearly independent of the first one. Hence, there are a total of $\left(p^{2}-1\right)\left(p^{2}-p\right)=(p-1)^{2}(p+1) p$ different elements in G. Hence, we are done since it is clear that the matrices of the form $\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right), a \in \mathbb{F}_{p}$ form a subgroup of order p, which is the highest power of p dividing $|G|$.

Winter 11.6 Can \mathbb{F}_{9} be embedded into \mathbb{F}_{27} ? Can \mathbb{F}_{4} be embedded into \mathbb{F}_{16} ? Justify your answer in each case.

Both results will follow from the following theorem:
Theorem 2. $\mathbb{F}_{p^{n}}$ is a subfield of $\mathbb{F}_{p^{m}}$ if and only if $n \mid m$.
Proof. We know that $G=G\left(\mathbb{F}_{p^{m}} / \mathbb{F}_{p}\right)$ is cyclic of order m. Assume that $n \mid m$. Then by the cyclic group theorem, we have a subgroup H of G such that H has order n. By Galois correspondance, there exists a field extension L of \mathbb{F}_{p}, contained in $\mathbb{F}_{p^{m}}$, such that $\left[L: \mathbb{F}_{p}\right]=n$, but since $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=n$ we have by uniqueness of finite fields that $L=\mathbb{F}_{p^{n}}$.

Conversely, assume that $\mathbb{F}_{p^{n}}$ is a subfield of $\mathbb{F}_{p^{m}}$ then we have that $\left[\mathbb{F}_{p^{m}}: \mathbb{F}_{p}\right]=\left[\mathbb{F}_{p^{m}}\right.$: $\left.\mathbb{F}_{p^{n}}\right]\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]$ and from here we see that $n \mid m$.

Winter 11. 7 Which of the following rings are local and which are not? Justify your answer in each case.
Proof. \mathbb{Z} : It is not local since it has more than one maximal ideal, namely any ideal of the form (p) for p a prime.
$\mathbb{Z}[1 / 5]$: Not local. We claim that (2) and (3) are still maximal ideals. To see this assume that there is an M properly containing (2). Then it has an element of the form $x / 5^{i}$ for some x odd. That means that $(x-1) / 5^{i}$ is in (2) as $x-1$ is even. Thus, M contains their difference $1 / 5^{i}$, but this is a unit, so $M=\mathbb{Z}[1 / 5]$. To show that (3) is maximal, again say M properly contains it. Then there is an element in M of the form $x / 5^{i}$. Here we have two cases x is congruent to 1 or congruent to 2 modulo 3 . If the latter case happens, then $x / 5^{i}+x / 5^{i}=2 x / 5^{i}$, so we can assume wlog that x is congruent to 1 modulo 3 . Thus, M contains $\left(x / 5^{i}\right)-(x-1) / 5^{i}=1 / 5^{i}$, so again we have that M contains a unit.

Jan 11. 1 Prove that \mathbb{Q} is an indecomposable \mathbb{Z}-module. What can you say about \mathbb{Q} / \mathbb{Z} ?
Proof. Assume that it is decomposable. Then write $\mathbb{Q}=R \oplus P$ with P, R non zero \mathbb{Z} modules. Then let $a / b \in P$ be non-zero and $c / d \in R$ be non-zero. Then $(c b)(a / b)=$ $(a d)(c / d)$ would be an element in both P and R, which is a contradiction.

Jan 11. 2 What is the group of automorphisms of \mathbb{R} over \mathbb{Q} ?
Proof. We claim that the only such automorphism is the identity. Let $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ be an automorphism which fixes \mathbb{Q}. First of all we claim that if $x>0$ then $\varphi(x)>0$: To see this, if $x>0$ then $x=\epsilon^{2}$, so $\varphi(x)=\varphi(\epsilon)^{2} \geq 0$, note that $\varphi(\epsilon) \neq 0$ since it is an automorphism and we already have $0 \mapsto 0$. Hence, $\varphi(x)>0$, just as we wanted. Secondly, we claim that φ is order preserving, i.e., if $a<b$ then $\varphi(a)<\varphi(b)$. To see this, just note that $b-a>0$ so $\varphi(b-a)>0$ so $\varphi(b)-\varphi(a)>0$. Now to finish the problem we want to show that $\varphi(r)=r$ for all $r \in \mathbb{R}$. Consider a sequence $\left\{q_{i}\right\}$ which is increasing whose limit is r and such that $q_{i} \in \mathbb{Q}$. Then we have that $r=\sup \left\{q_{i}\right\}=\sup \left\{\varphi\left(q_{i}\right)\right\}$ and since $\varphi(r)>\varphi\left(q_{i}\right)$, we have that $\varphi(r)$ is an upper bound of $\left\{\varphi\left(q_{i}\right)\right\}$ so $\varphi(r) \geq r$. Doing the same with decreasing sequences and infimums we get that $\varphi \leq r$, so we obtain $\varphi(r)=r$.

Jan 11. 3 Let R be a left Artinian ring and let M be a nonzero left R module. Prove that M has at least one maximal submodule.

Jan 11.4 Let K be an infinite field and let n be a natural number greater than 1. Prove that the set of maximal left ideals of $M_{n}(K)$ is infinite.

Jan 11.5 Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}$.

Proof. Consider the following diagram

where above we have that $\varphi(a, b)=a b$. We need to show that φ^{\prime} is a bijection. Note that any element in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ can be written uniquely in the for $x \otimes 1$ because if we had $(a / b) \otimes(c / d)=(a c / b) \otimes(1 / d)=(a c d) /(b d) \otimes(1 / d)=(a c) /(b d) \otimes 1$. This implies that the map is an injection since if we have two elements in $\mathbb{Q} \otimes \mathbb{Q}$ we can write them as $x \otimes 1$ and $y \otimes 1$. This elements have preimages $(1, x)$ and $(1, y)$ (this are not unique but it doesn't matter) in $\mathbb{Q} \times \mathbb{Q}$. Under φ they map to x and y, and under φ^{\prime} they should map to the same. So $x \otimes 1$ and $y \otimes 1$ map to x and y, and this gives injectivity. Surjectivity is immediate, so indeed we get our desired isomorphism.

Jan 11.6 What is the transcendence degree of \mathbb{C} over \mathbb{Q}.
Proof. Choose a transcendence basis $X=\left\{x_{i}\right\}_{i \in I}$ for \mathbb{C} over \mathbb{Q}. Then \mathbb{C} is an algebraic extension of $\mathbb{Q}(X)$. Now here are two rather straightforward facts:
1: If F is any infinite field and K / F is an algebraic extension, then $\# K=\# F$.
2: For any infinite field F and purely transcendental extension $F(X)$, we have $\# F(X)=$ $\max (\# F, \# X)$.
Putting these together we find
$\mathfrak{c}=\# \mathbb{C}=\# \mathbb{Q}(X)=\max \left(\aleph_{0}, \# X\right)$.
Since $\mathfrak{c}>\aleph_{0}$, we conclude $\mathfrak{c}=\# X$.
Jan 11.7 Let K be a field and G be a group. Find the least dimension of a simple $K G$-module.
Jan 11.8 Let R be a commutative local ring. Describe the group of units of R.
Proof. Let M be the unique maximal ideal. I claim that $R^{\times}=R \backslash M$. If $x \notin R^{\times}$then x is not a unit, so (x) is a proper ideal of R. In particular it is contained in a maximal ideal of R, but there is only one such maximal ideal. Hence, we must have $(x) \subset M$, so that means that if $x \notin M$ then x is a unit (by contrapositive). The other direction is easier. If x is a unit, then $x \notin M$ since otherwise M would not be proper.

Jan 11.9 Let H be an infinite dimensional Hilbert space. Prove the existence of an unbounded linear operator from H to H.

Proof. Let $\left\{x_{i}\right\}_{i \in I}$ be a basis for our Hilbert space with $\left|x_{i}\right|=1$. Say $\left\{y_{1}, y_{2}, \ldots\right\}$ is a countable-infinite subset of $\left\{x_{i}\right\}$. Define $T: y_{i} \mapsto i y_{i}$ and fix all the other basis vectors. Then we have that $|T|=\sup _{|x|=1}\{|T x|\}$ is unbounded as $\left|T y_{i}\right|=i$.

Jan 11.10 Let A be a set and B be a proper subset (non-empty). Prove the existence of a function $f: A \longrightarrow A$ such that $f \circ f=f$ and image of f is B.

Proof. Let $f: A \longrightarrow A$ be defined by $f(b)=b$ if $b \in B$ and pick any $b \in B$ and fix it. Then define $f(a)=b$ for all $a \in A \backslash B$. Then we have that the image of f is obviously B, and $f^{2}=f$ since for $b \in B$ this is obvious, and for $a \notin B$ we have $f(a)=b$ and $f(f(a))=f(b)=b$.

Spring 00. 1 Let T be a linear transformation of a vector space over a field F. Assume that $T^{m}=I$ for some positive integer m.
a): Assume that F has 0 characteristic. Show that T is diagonalizable.
$b)$: Assume that $\operatorname{char}(F)=p$. Give an example to show that T needs not be diagonalizable.
Proof. a): Let $f(x)=x^{m}-1$. Then we have that T satisfies f, and we also have that f is separable since the gcd of f and f^{\prime} is 1 (here we use the fact that $f^{\prime}=m x^{m-1}$ is not zero, which we can only assert in zero-characteristic). Since f is separable we have that the minimal polynomial of T is separable, which is a sufficient condition for T to be diagonalizable.
b): Over \mathbb{F}_{2}, consider the identity matrix plus the matrix that has 1 in the $(1,2)$ entry and 0 elsewhere. This matrix is in Jordan form, so it is not diagonalizable, and it satisfies the polynomial $x^{2}-1$

