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Spring 13. 1(a) Let n ≥ 1. Give an example of a field extension L/K with Gal(L/K) = Zn

Proof. We claim that L = Fpn and K = Fp will work. First we show that the extension
L/K is of degree n. First of all note that any element in L is a solution of xp

n − x (by
Lagrange’s theorem) and moreover, note that we have a complete set of solutions. Hence,
L is a splitting field of a polynomial over K of degree n, so [L : K] = n. Hence, we
have that |Gal(L/K)| = n. Now we will show that it is cyclic. Define ϕ to be the map
a 7→ ap. Over a field of characteristic p, we have that this function is a homomorphism
(a + b)p = ap + bp (as all the middle terms will vanish in the binomial expansion), and
since field homomorphisms are injective, we have an injection of a finite set into itself, so
it has to be an automorphism, i.e., ϕ ∈ G(L/K). It suffices to show that ϕ has order n.
Assume for sake of contradiction that there is a m < n such that ϕm = id. Then let α
be a primitive root of L, we have ϕm(α) = αpm = id(α) = α, but this is a contradiction
with the fact that α is a primitive element of L, hence, m ≥ n, and we get our desired
result.

Spring 13.1(b) Give an example of a field extension L/K with galois group An.

Proof.

Spring 13.2 Let A = C[x, y] be the polynomial ring in two variables. Consider three ideals in A :
(x), (x, y2), (xy). Which of these are prime? Why?

Proof. (x) is prime since A/(x) = C[y] which is a domain. (x, y2) is not since A/(x, y2) =
C[y]/(y2) but here y · y = 0, so we don’t have a domain. Lastly, (xy) is not a domain since
x · y ∈ (xy), but x /∈ (xy) (if we have x ∈ (xy) then we would have an element a ∈ A such
that a(xy) = x, but note that y is an irreducible appearing in the right hand side, but not
in the left hand side, as A is a UFD we get a contradiction), similarly y /∈ (xy), and we
get the result.

Spring 13. 3 Let A be the quotient of C[a, b, c, d] by the ideal generated by (ad − bc). Is A a UFD?
Why?

Proof. No. We have ab = cd are distinct factorizations into irreducibles of the same
element. The reason why a is irreducible in the quotient ring is...
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Spring 13. 4 Give an example of a commutative ring A and two non-zero A-modules M and N such
that

M ⊗A N = 0

Explain why this is indeed so.

Proof. Let A = Z and M = Z2 and N = Z3. Then we have a ⊗ b = 3a ⊗ b = a ⊗ 3b =
a⊗ 0 = 0.

Spring 13.5 Give an example of a ring A and a left A-module which is projective but not free. Prove
your statements.

Proof. Consider the Z2 as a Z6-module. We have that Z2 is a projective Z6 module because
Z6 = Z2 ⊕ Z3, so indeed Z2 is the summand of a free Z6 module. Note however that it
cannot be free since any non-zero free module over Z6 must have at least 6 elements, but
Z2 only has two.

Winter 11. 1 Which of the following isomorphisms of abelian groups are possible? Justify your answer.

Proof. Z/2 ⊕ Z/2 ∼= Z/4: not possible. Just note that all the elements on the left hand
side have order at most 2, and 1 on the right hand side has order 4.

Z/2 ⊕ Z/3 ∼= Z/6: Just note that (1, 1) is a generator for the LHS and it is of order
6.

Z/2⊕ Z/4 ∼= Z/8: Not possible. Just note that the left hand side has orders bounded by
4 whereas the right hand side has an element of order 8.

Winter 11. 2 Let k be a field, V a finite dimesional vecotr space over k and A : V−→V a linear operator.
Which of the above statements are true theorems and which are not? Justify your answers:

Proof. dim ker(A) = dim Im(A): No. Consider the 0 map.

dim ker(A) =codim Im(A): By the rank nullity theorem we have dim(V ) = dim Im(A) +
dim ker(A), and substracting dim Im(A) both sides gives the result.

codim ker(A) = dim Im(A). Again, this is immediate by the Rank and Nullity Theo-
rem.

For sake of completeness I include a statement and proof of the theorem:

Theorem 1. Rank and Nullity Using the assumptions of the problem, we always have:
dimV = dim ker(A) + dim Im(A).

Proof. Let V be n-dimensional. Let ker(A) be t-dimensional and have basis v1, ..., vt.
Now let Im(A) be s-dimensional with basis a1, .., as. Since they are in the image of A,
there exists bi such that bi 7→ ai. I claim B = {v1, ..., vt, b1, ..., bs} is a basis for V , and
hence the result would follow. First of all it is a spanning set: Let v ∈ V . Then consider
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A(v) ∈ Im(A), so we have that A(v) = c1a1+...+csas. Then the element v−c1b1+...+cnbn
is in the kernel of A, so we have that v−c1b1...−csbs = d1v1+...+dtvt, so indeed v is in the
span ofB. To see thatB is linearly independent, consider c1v1+...+ctvt+d1b1+..+dsbs = 0.
Apply A, and obtain: d1a1 + ..+dsas = 0, but by choice, {ai} where a basis for the image,
so di = 0. Hence, c1v1 + ... + ctvt = 0 and by choice {vi} is a basis for ker(A) so ci = 0,
and we get the linear independence, and we get that t+s = n, just as we wanted to prove.

Winter 11. 3 Let k be a field. Give an example of a projective left module over the matrix algebra
Matn(k) which is not free. Explain why it is projective and why not free.

Proof.

Winter 11. 4 Let Fq be a finite field with q elements. Prove that there exists a non-constant polynomial
with no roots in Fq

Proof. Consider f(x) = xq − x+ 1. Any element α ∈ Fq satisfies αq−1 = 1 by Lagrange’s
theorem. Then αq = α, so f(α) = 1 for all α ∈ Fq and we see that f has no roots in
Fq.

Winter 11. 5 Let p be a prime number. Prove that the group formed by matrices of the form
(
1 a
0 1

)
,

a ∈ Fp, is a Sylow p-subgroup of the finite group GL2(Fp).

Proof. First we determine the order of the group G = GL2(Fp). There are p2 − 1 ways
of choosing the first row vector to be non-zero. Next there are p2 − p ways of choosing
the next row to be linearly independent of the first one. Hence, there are a total of
(p2 − 1)(p2 − p) = (p− 1)2(p+ 1)p different elements in G. Hence, we are done since it is
clear that the matrices of the form

(
1 a
0 1

)
, a ∈ Fp form a subgroup of order p, which is the

highest power of p dividing |G|.

Winter 11. 6 Can F9 be embedded into F27? Can F4 be embedded into F16? Justify your answer in
each case.

Both results will follow from the following theorem:

Theorem 2. Fpn is a subfield of Fpm if and only if n | m.

Proof. We know that G = G(Fpm/Fp) is cyclic of order m. Assume that n | m. Then
by the cyclic group theorem, we have a subgroup H of G such that H has order n. By
Galois correspondance, there exists a field extension L of Fp, contained in Fpm , such that
[L : Fp] = n, but since [Fpn : Fp] = n we have by uniqueness of finite fields that L = Fpn .

Conversely, assume that Fpn is a subfield of Fpm then we have that [Fpm : Fp] = [Fpm :
Fpn ][Fpn : Fp] and from here we see that n | m.
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Winter 11. 7 Which of the following rings are local and which are not? Justify your answer in each case.

Proof. Z: It is not local since it has more than one maximal ideal, namely any ideal of the
form (p) for p a prime.

Z[1/5]: Not local. We claim that (2) and (3) are still maximal ideals. To see this as-
sume that there is an M properly containing (2). Then it has an element of the form x/5i

for some x odd. That means that (x− 1)/5i is in (2) as x− 1 is even. Thus, M contains
their difference 1/5i, but this is a unit, so M = Z[1/5]. To show that (3) is maximal, again
say M properly contains it. Then there is an element in M of the form x/5i. Here we have
two cases x is congruent to 1 or congruent to 2 modulo 3. If the latter case happens, then
x/5i + x/5i = 2x/5i, so we can assume wlog that x is congruent to 1 modulo 3. Thus, M
contains (x/5i)− (x− 1)/5i = 1/5i, so again we have that M contains a unit.

Jan 11. 1 Prove that Q is an indecomposable Z-module. What can you say about Q/Z?

Proof. Assume that it is decomposable. Then write Q = R ⊕ P with P,R non zero Z-
modules. Then let a/b ∈ P be non-zero and c/d ∈ R be non-zero. Then (cb)(a/b) =
(ad)(c/d) would be an element in both P and R, which is a contradiction.

Jan 11. 2 What is the group of automorphisms of R over Q?

Proof. We claim that the only such automorphism is the identity. Let ϕ : R−→R be an
automorphism which fixes Q. First of all we claim that if x > 0 then ϕ(x) > 0: To see this,
if x > 0 then x = ε2, so ϕ(x) = ϕ(ε)2 ≥ 0, note that ϕ(ε) 6= 0 since it is an automorphism
and we already have 0 7→ 0. Hence, ϕ(x) > 0, just as we wanted. Secondly, we claim that
ϕ is order preserving, i.e., if a < b then ϕ(a) < ϕ(b). To see this, just note that b− a > 0
so ϕ(b − a) > 0 so ϕ(b) − ϕ(a) > 0. Now to finish the problem we want to show that
ϕ(r) = r for all r ∈ R. Consider a sequence {qi} which is increasing whose limit is r and
such that qi ∈ Q. Then we have that r = sup{qi} = sup{ϕ(qi)} and since ϕ(r) > ϕ(qi), we
have that ϕ(r) is an upper bound of {ϕ(qi)} so ϕ(r) ≥ r. Doing the same with decreasing
sequences and infimums we get that ϕ ≤ r, so we obtain ϕ(r) = r.

Jan 11. 3 Let R be a left Artinian ring and let M be a nonzero left R module. Prove that M has at
least one maximal submodule.

Jan 11.4 Let K be an infinite field and let n be a natural number greater than 1. Prove that the
set of maximal left ideals of Mn(K) is infinite.

Jan 11.5 Prove that Q⊗Z Q = Q.
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Proof. Consider the following diagram

Q×Q //

ϕ
%%KKKKKKKKKKK Q⊗Q

ϕ′

��

Q

where above we have that ϕ(a, b) = ab. We need to show that ϕ′ is a bijection. Note
that any element in Q ⊗Z Q can be written uniquely in the for x ⊗ 1 because if we had
(a/b) ⊗ (c/d) = (ac/b) ⊗ (1/d) = (acd)/(bd) ⊗ (1/d) = (ac)/(bd) ⊗ 1. This implies that
the map is an injection since if we have two elements in Q ⊗ Q we can write them as
x⊗ 1 and y⊗ 1. This elements have preimages (1, x) and (1, y) (this are not unique but it
doesn’t matter) in Q×Q. Under ϕ they map to x and y, and under ϕ′ they should map
to the same. So x⊗ 1 and y ⊗ 1 map to x and y, and this gives injectivity. Surjectivity is
immediate, so indeed we get our desired isomorphism.

Jan 11.6 What is the transcendence degree of C over Q.

Proof. Choose a transcendence basis X = {xi}i∈I for C over Q. Then C is an algebraic
extension of Q(X). Now here are two rather straightforward facts:

1: If F is any infinite field and K/F is an algebraic extension, then #K = #F .

2: For any infinite field F and purely transcendental extension F (X), we have #F (X) =
max(#F,#X).

Putting these together we find

c = #C = #Q(X) = max(ℵ0,#X).

Since c > ℵ0, we conclude c = #X.

Jan 11.7 Let K be a field and G be a group. Find the least dimension of a simple KG-module.

Jan 11.8 Let R be a commutative local ring. Describe the group of units of R.

Proof. Let M be the unique maximal ideal. I claim that R× = R\M . If x /∈ R× then x is
not a unit, so (x) is a proper ideal of R. In particular it is contained in a maximal ideal
of R, but there is only one such maximal ideal. Hence, we must have (x) ⊂ M , so that
means that if x /∈M then x is a unit (by contrapositive). The other direction is easier. If
x is a unit, then x /∈M since otherwise M would not be proper.

Jan 11.9 Let H be an infinite dimensional Hilbert space. Prove the existence of an unbounded
linear operator from H to H.

Proof. Let {xi}i∈I be a basis for our Hilbert space with |xi| = 1. Say {y1, y2, ...} is a
countable-infinite subset of {xi}. Define T : yi 7→ iyi and fix all the other basis vectors.
Then we have that |T | = sup|x|=1{|Tx|} is unbounded as |Tyi| = i.

Jan 11.10 Let A be a set and B be a proper subset (non-empty). Prove the existence of a function
f : A−→A such that f ◦ f = f and image of f is B.
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Proof. Let f : A−→A be defined by f(b) = b if b ∈ B and pick any b ∈ B and fix it.
Then define f(a) = b for all a ∈ A\B. Then we have that the image of f is obviously
B, and f2 = f since for b ∈ B this is obvious, and for a /∈ B we have f(a) = b and
f(f(a)) = f(b) = b.

Spring 00. 1 Let T be a linear transformation of a vector space over a field F . Assume that Tm = I
for some positive integer m.
a): Assume that F has 0 characteristic. Show that T is diagonalizable.
b): Assume that char(F ) = p. Give an example to show that T needs not be diagonalizable.

Proof. a): Let f(x) = xm− 1. Then we have that T satisfies f , and we also have that f is
separable since the gcd of f and f ′ is 1 (here we use the fact that f ′ = mxm−1 is not zero,
which we can only assert in zero-characteristic). Since f is separable we have that the min-
imal polynomial of T is separable, which is a sufficient condition for T to be diagonalizable.

b): Over F2, consider the identity matrix plus the matrix that has 1 in the (1, 2) en-
try and 0 elsewhere. This matrix is in Jordan form, so it is not diagonalizable, and it
satisfies the polynomial x2 − 1
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